

特征值与特征向量

的性质

定理1 设 λ 是方阵A的特征值,则

- (1) $\lambda^2 \mathcal{L}A^2$ 的特征值;
- (2) 当A可逆时, λ^{-1} 是 A^{-1} 的特征值。

证 因 λ 是 A 的特征值, 有 $p \neq 0$ 使 $Ap = \lambda p$. 于是

$$(1) A^2 p = A(Ap) = A(\lambda p) = \lambda(Ap) = \lambda^2 p$$
,所以 $\lambda^2 \not\in A^2$ 的特征值.

类似可证: 若 λ 是A的特征值,则 λ ^k是A^k的特征值.

(2) 当
$$A$$
可逆时,由 $Ap = \lambda p$,有 $p = \lambda A^{-1}p$, $\Rightarrow A^{-1}p = \frac{1}{\lambda}p$,

设 $\varphi(A) = a_0 E + a_1 A + \dots + a_m A^m$ 是矩阵A的多项式, $\varphi(\lambda) = a_0 + a_1 \lambda + \dots + a_m \lambda^m \quad 是 \lambda$ 的多项式.

定理2 设 λ 是方阵A的特征值,则 $\varphi(\lambda)$ 是 $\varphi(A)$ 的特征值.

iE
$$\varphi(A)p = (a_0E + a_1A + \dots + a_mA^m)p$$

$$= a_0p + a_1Ap + \dots + a_mA^mp$$

$$= a_0p + a_1\lambda p + \dots + a_m\lambda^m p$$

$$= (a_0 + a_1\lambda + \dots + a_m\lambda^m)p$$

$$= \varphi(\lambda)p$$

例 设3阶矩阵A 的特征值为1, -1, 2, 求 $A^* + 3A - 2E$ 的特征值.

解
$$|A|=1\times(-1)\times 2=-2$$
,所以A可逆,且 $A^*=|A|A^{-1}=-2A^{-1}$,
记 $\varphi(A)=A^*+3A-2E=-2A^{-1}+3A-2E$, $\varphi(\lambda)=-\frac{2}{\lambda}+3\lambda-2$,

从而 $\varphi(A)$ 的特征值为 $\varphi(1)=-1, \ \varphi(-1)=-3, \ \varphi(2)=3.$

定理3 设 $\lambda_1, \lambda_2, ..., \lambda_m$ 是方阵A的特征值, $p_1, p_2, ..., p_m$ 依次是与之对应的特征向量,如果 $\lambda_1, \lambda_2, ..., \lambda_m$ 各不相同,则 $p_1, p_2, ..., p_m$ 线性无关.

这个定理说明:

属于不同特征值的特征向量是线性无关的.

推论:设 λ_1 和 λ_2 是方阵A的两不同特征值, ξ_1 , ξ_2 ,…, ξ_s 和 η_1 , η_2 ,…, η_t 分别是对应于 λ_1 和 λ_2 的线性无关的特征向量,则 ξ_1 , ξ_2 ,…, ξ_s , η_1 , η_2 ,…, η_t 线性无关.

这个推论表明:对应于两个不同特征值的线性无关的特征向量组,合起来仍是线性无关的.

这一结论对 $m(m \ge 2)$ 个特征值的情形也成立.

例:设 λ_1 和 λ_2 是方阵 A的两个不同的特征值,对应的特征向量依次为 p_1 和 p_2 ,证明 p_1+p_2 不是A的特征向量.

证 按题设, $Ap_1 = \lambda_1 p_1$, $Ap_2 = \lambda_2 p_2$,

$$A(p_1+p_2)=\lambda_1p_1+\lambda_2p_2.$$

假设 $p_1 + p_2$ 是A的特征向量,则应存在数 λ ,使

$$A(p_1+p_2)=\lambda(p_1+p_2),$$

例:设 λ_1 和 λ_2 是方阵 A的两个不同的特征值,对应的特征向量依次为 p_1 和 p_2 ,证明 p_1+p_2 不是A的特征向量.

证 于是
$$\lambda(p_1+p_2)=\lambda_1p_1+\lambda_2p_2$$
,
$$\mathbb{P} \qquad (\lambda_1-\lambda)p_1+(\lambda_2-\lambda)p_2=0$$
,

因 $\lambda_1 \neq \lambda_2$, p_1 , p_2 线性无关, 故由上式得 $\lambda_1 - \lambda = \lambda_2 - \lambda = 0$,

即 $\lambda_1 = \lambda_2$, 与题设矛盾.因此 $p_1 + p_2$ 不是A的特征向量.

谢 谢!