

Vue.js:	Up	and	Running
Building	Accessible	and	Performant	Web	Apps

Callum	Macrae

Vue.js:	Up	and	Running
by	Callum	Macrae

Copyright	©	2018	Callum	Macrae.	All	rights	reserved.

Printed	in	the	United	States	of	America.

Published	by	O’Reilly	Media,	Inc.,	1005	Gravenstein	Highway	North,
Sebastopol,	CA	95472.

O’Reilly	books	may	be	purchased	for	educational,	business,	or	sales	promotional
use.	Online	editions	are	also	available	for	most	titles	(http://oreilly.com/safari).
For	more	information,	contact	our	corporate/institutional	sales	department:	800-
998-9938	or	corporate@oreilly.com.

Editors:	Allyson	MacDonald	and	Virginia	Wilson

Production	Editor:	Justin	Billing

Copyeditor:	Sharon	Wilkey

Proofreader:	Jasmine	Kwityn

Indexer:	Ellen	Troutman-Zaig

Interior	Designer:	David	Futato

Cover	Designer:	Karen	Montgomery

Illustrator:	Rebecca	Demarest

March	2018:	First	Edition

Revision	History	for	the	First	Edition

2018-02-23:	First	Release

See	http://oreilly.com/catalog/errata.csp?isbn=9781491997246	for	release
details.

http://oreilly.com/safari
mailto:corporate@oreilly.com
http://oreilly.com/catalog/errata.csp?isbn=9781491997246

The	O’Reilly	logo	is	a	registered	trademark	of	O’Reilly	Media,	Inc.	Vue.js:	Up
and	Running,	the	cover	image,	and	related	trade	dress	are	trademarks	of	O’Reilly
Media,	Inc.

While	the	publisher	and	the	author	have	used	good	faith	efforts	to	ensure	that	the
information	and	instructions	contained	in	this	work	are	accurate,	the	publisher
and	the	author	disclaim	all	responsibility	for	errors	or	omissions,	including
without	limitation	responsibility	for	damages	resulting	from	the	use	of	or
reliance	on	this	work.	Use	of	the	information	and	instructions	contained	in	this
work	is	at	your	own	risk.	If	any	code	samples	or	other	technology	this	work
contains	or	describes	is	subject	to	open	source	licenses	or	the	intellectual
property	rights	of	others,	it	is	your	responsibility	to	ensure	that	your	use	thereof
complies	with	such	licenses	and/or	rights.

978-1-491-99724-6

[LSI]

Preface

Frontend	development	is	changing.	Websites	are	becoming	richer	and	more
interactive,	requiring	us	as	frontend	developers	to	add	increasingly	complicated
functionality	and	use	more	powerful	tools.	It’s	easy	enough	to	update	a	bit	of
text	on	a	page	by	using	jQuery,	but	as	we	need	to	do	more—updating	large,
interactive	sections	of	a	page;	handling	complicated	state;	performing	client-side
routing;	and	simply	writing	and	organizing	a	lot	more	code—using	a	JavaScript
framework	makes	our	jobs	a	lot	easier.

A	framework	is	a	JavaScript	tool	that	makes	it	easier	for	developers	to	create
rich,	interactive	websites.	Frameworks	contain	functionality	that	enable	us	to
make	a	fully	functional	web	application:	manipulating	complicated	data	and
displaying	it	on	the	page,	handling	routing	client-side	instead	of	having	to	rely
on	a	server,	and	sometimes	even	allowing	us	to	create	a	full	website	that	needs	to
hit	the	server	only	once	for	the	initial	download.	Vue.js	is	the	latest	popular
JavaScript	framework	and	is	rapidly	increasing	in	popularity.	Evan	You,	then
working	at	Google,	wrote	and	released	the	first	version	of	Vue.js	in	early	2014.
At	the	time	of	writing,	it	has	over	75,000	stars	on	GitHub,	making	it	the	eighth
most	starred	repository	on	GitHub,	and	that	number	is	growing	rapidly. 	Vue	has
hundreds	of	collaborators	and	is	downloaded	from	npm	about	40,000	times
every	day.	It	contains	features	that	are	useful	when	developing	websites	and
applications:	a	powerful	templating	syntax	to	write	to	the	DOM	and	listen	to
events,	reactivity	so	that	you	don’t	need	to	update	the	template	after	your	data
changes,	and	functionality	that	makes	it	easier	for	you	to	manipulate	your	data.

1

Who	This	Book	Is	For
If	you	know	HTML	and	JavaScript	and	are	looking	to	take	your	knowledge	to
the	next	level	by	learning	how	to	use	a	framework,	this	book	is	for	you.	You
don’t	have	to	be	amazing	at	JavaScript,	but	I	don’t	explain	what	any	of	the
JavaScript	in	the	code	examples	is	doing	beyond	the	Vue.js	functionality,	so	it’s
good	to	have	some	basic	JavaScript	knowledge.	The	code	examples	are	also
written	using	ECMAScript	2015,	the	latest	version	of	JavaScript,	and	so	contain
language	features	such	as	const,	fat-arrow	functions,	and	destructuring.	If
you’re	not	familiar	with	ES2015,	don’t	worry—plenty	of	good	articles	and
resources	can	help	you	with	it, 	and	most	of	the	code	examples	are	pretty
readable	anyway.

If	you’re	experienced	with	React,	this	book	is	still	for	you,	but	it	might	be	worth
checking	out	Appendix	B,	which	explains	some	Vue.js	concepts	as	compared	to
what	you	already	know	from	React.

2

Book	Layout
This	book	contains	seven	chapters	and	two	appendixes:

Chapter	1,	Vue.js:	The	Basics

The	first	chapter	introduces	the	basics	of	Vue.js,	the	main	technology	that
this	book	is	about.	I	explain	how	to	install	it	and	introduce	it	into	a	web	page,
and	how	you	can	use	it	to	display	data	on	a	page.

Chapter	2,	Components	in	Vue.js

Vue.js	allows—and	encourages—you	to	split	your	code	into	components	that
you	can	then	reuse	around	your	codebase.	This	chapter	explains	exactly	how
you	can	do	that	to	create	a	more	maintainable	and	understandable	codebase.

Chapter	3,	Styling	with	Vue

Every	other	section	of	the	book	deals	with	HTML	and	JavaScript,	but	this
chapter	presents	the	more	visual	side	of	creating	websites.	I	explain	how	Vue
works	with	CSS	and	styles	in	order	to	style	your	websites	and	applications,
and	the	helper	functionality	it	has	built	in	to	assist	you	with	this.

Chapter	4,	Render	Functions	and	JSX

In	addition	to	the	templating	syntax	that	you’ll	recognize	if	you’ve	seen
much	Vue	code	or	read	the	Getting	Started	guide,	Vue	supports	custom
render	functions,	which	also	allow	you	to	use	JSX,	a	syntax	you’re	familiar
with	if	you’ve	used	React	before.	I	explain	how	to	use	JSX	in	your	Vue
application	in	this	chapter.

Chapter	5,	Client-Side	Routing	with	vue-router

Vue	by	itself	is	just	a	view	layer.	To	create	an	application	with	multiple	pages
that	can	be	accessed	without	making	a	new	request	(or	in	buzzword	format:	a
single-page	application),	you	need	to	add	vue-router	to	your	website,	which
you	can	use	to	handle	the	routing—saying	which	code	should	be	executed
and	displayed	when	a	given	path	is	requested.	This	chapter	explains	how	to
do	just	that.

Chapter	6,	State	Management	with	Vuex

In	more	complicated	applications	with	many	levels	of	components,	passing
data	between	components	can	become	a	bit	of	a	pain.	Vuex	enables	you	to
handle	your	application’s	state	in	one	centralized	place,	and	in	this	chapter	I
explain	how	you	can	use	it	to	easily	handle	complicated	application	state.

Chapter	7,	Testing	Vue	Components

By	this	point,	you’ll	have	learned	everything	you	need	to	know	to	get	your
website	running,	but	if	you	want	to	maintain	your	site	in	the	future,	you’ll
need	to	write	tests	for	it.	This	chapter	covers	how	to	use	vue-test-utils	to
write	unit	tests	for	your	Vue	components	to	ensure	that	they	don’t	break	in
the	future.

Appendix	A,	Bootstrapping	Vue

vue-cli	enables	you	to	quickly	bootstrap	Vue	applications	from	given
templates.	This	short	appendix	shows	you	how	it	works	and	presents	a	few	of
the	templates.

Appendix	B,	Vue	from	React

If	you’ve	used	React	before,	you’re	probably	familiar	with	a	lot	of	the
concepts	of	Vue.	This	appendix	highlights	some	of	the	differences,	and	some
of	the	similarities,	between	Vue	and	React.

Style	Guide
The	examples	throughout	this	book	follow	the	guidelines	outlined	in	the	official
Vue	Style	Guide.	Once	you	understand	Vue	and	are	looking	to	work	on	a	larger
app	or	collaborate	with	other	people,	I	definitely	recommend	reading	the	style
guide	and	following	the	guidelines.

You	can	find	the	style	guide	on	the	Vue.js	website.

Conventions	Used	in	This	Book
The	following	typographical	conventions	are	used	in	this	book:

https://vuejs.org/

Italic

Indicates	new	terms,	URLs,	email	addresses,	filenames,	and	file	extensions.

Constant width

Used	for	program	listings,	as	well	as	within	paragraphs	to	refer	to	program
elements	such	as	variable	or	function	names,	databases,	data	types,
environment	variables,	statements,	and	keywords.

Constant width bold

Shows	commands	or	other	text	that	should	be	typed	literally	by	the	user.

Constant width italic

Shows	text	that	should	be	replaced	with	user-supplied	values	or	by	values
determined	by	context.

TIP
This	element	signifies	a	tip	or	suggestion.

NOTE
This	element	signifies	a	general	note.

WARNING
This	element	indicates	a	warning	or	caution.

Using	Code	Examples
Supplemental	material	(code	examples,	exercises,	etc.)	is	available	for	download
at	https://resources.oreilly.com/examples/0636920103455.

This	book	is	here	to	help	you	get	your	job	done.	In	general,	if	example	code	is

https://resources.oreilly.com/examples/0636920103455

offered	with	this	book,	you	may	use	it	in	your	programs	and	documentation.	You
do	not	need	to	contact	us	for	permission	unless	you’re	reproducing	a	significant
portion	of	the	code.	For	example,	writing	a	program	that	uses	several	chunks	of
code	from	this	book	does	not	require	permission.	Selling	or	distributing	a	CD-
ROM	of	examples	from	O’Reilly	books	does	require	permission.	Answering	a
question	by	citing	this	book	and	quoting	example	code	does	not	require
permission.	Incorporating	a	significant	amount	of	example	code	from	this	book
into	your	product’s	documentation	does	require	permission.

We	appreciate,	but	do	not	require,	attribution.	An	attribution	usually	includes	the
title,	author,	publisher,	and	ISBN.	For	example:	“Vue.js:	Up	and	Running	by
Callum	Macrae	(O’Reilly).	Copyright	2018	Callum	Macrae,	978-1-491-99724-
6.”

If	you	feel	your	use	of	code	examples	falls	outside	fair	use	or	the	permission
given	above,	feel	free	to	contact	us	at	permissions@oreilly.com.

O’Reilly	Safari
Safari	(formerly	Safari	Books	Online)	is	a	membership-based	training	and
reference	platform	for	enterprise,	government,	educators,	and	individuals.

Members	have	access	to	thousands	of	books,	training	videos,	Learning	Paths,
interactive	tutorials,	and	curated	playlists	from	over	250	publishers,	including
O’Reilly	Media,	Harvard	Business	Review,	Prentice	Hall	Professional,	Addison-
Wesley	Professional,	Microsoft	Press,	Sams,	Que,	Peachpit	Press,	Adobe,	Focal
Press,	Cisco	Press,	John	Wiley	&	Sons,	Syngress,	Morgan	Kaufmann,	IBM
Redbooks,	Packt,	Adobe	Press,	FT	Press,	Apress,	Manning,	New	Riders,
McGraw-Hill,	Jones	&	Bartlett,	and	Course	Technology,	among	others.

For	more	information,	please	visit	http://oreilly.com/safari.

How	to	Contact	Us
Please	address	comments	and	questions	concerning	this	book	to	the	publisher:

O’Reilly	Media,	Inc.

mailto:permissions@oreilly.com
http://oreilly.com/safari
http://oreilly.com/safari

1005	Gravenstein	Highway	North

Sebastopol,	CA	95472

800-998-9938	(in	the	United	States	or	Canada)

707-829-0515	(international	or	local)

707-829-0104	(fax)

We	have	a	web	page	for	this	book,	where	we	list	errata,	examples,	and	any
additional	information.	You	can	access	this	page	at
http://bit.ly/vuejsupandrunning.

To	comment	or	ask	technical	questions	about	this	book,	send	email	to
bookquestions@oreilly.com.

For	more	information	about	our	books,	courses,	conferences,	and	news,	see	our
website	at	http://www.oreilly.com.

Find	us	on	Facebook:	http://facebook.com/oreilly

Follow	us	on	Twitter:	http://twitter.com/oreillymedia

Watch	us	on	YouTube:	http://www.youtube.com/oreillymedia

Acknowledgments
First	off,	an	apology	and	a	thank	you	to	all	my	friends	for	putting	up	with	me
being	a	bit	of	a	flake	while	writing	this	book.	Now	that	I’m	done	writing,	I	will
probably	start	speaking	to	you	again.

Thanks	especially	to	Michelle	for	being	generally	awesome	and	having	good
taste	in	music.

A	big	thank	you	to	Juho	Vepsäläinen	and	Rob	Pemberton	for	helping	me	with	the
React	examples.	It’s	been	a	while	since	I	wrote	any	React,	so	the	help	was
appreciated!	Thanks	also	to	the	other	people	I	bounced	ideas,	sentences,	and
walls	of	text	off	while	writing:	Sab,	Ash,	Alex,	Chris,	Gaffen,	and	Dave,	to	name
a	few.

http://bit.ly/vuejsupandrunning
mailto:bookquestions@oreilly.com
http://www.oreilly.com
http://facebook.com/oreilly
http://twitter.com/oreillymedia
http://www.youtube.com/oreillymedia

Thanks	to	everyone	at	O’Reilly	Media	who	made	this	book	possible,	and	thank
you	to	the	people—Chris	Fritz,	Jakub	Juszczak,	Kostas	Maniatis,	and	Juan	Vega
—who	provided	technical	feedback	for	this	book	that	I	learned	a	lot	from.

	When	I	started	writing	this	book,	the	repository	had	65,000	stars	on	GitHub.	It
probably	has	many	more	than	75,000	by	the	time	you	read	this!

	I	recommend	“Learn	ES2016”	on	the	Babel	website.

1

2

https://babeljs.io/learn-es2015

Chapter	1.	Vue.js:	The	Basics

As	explained	in	the	preface,	Vue.js	is	the	library	at	the	heart	of	an	ecosystem	that
allows	us	to	create	powerful	client-side	applications.	We	don’t	have	to	use	the
whole	ecosystem	just	to	build	a	website,	though,	so	we’ll	start	by	looking	at	Vue
by	itself.

Why	Vue.js?
Without	a	framework,	we’d	end	up	with	a	mess	of	unmaintainable	code,	the	vast
majority	of	which	would	be	dealing	with	stuff	that	the	framework	abstracts	away
from	us.	Take	the	following	two	code	examples,	both	of	which	download	a	list
of	items	from	an	Ajax	resource	and	display	them	on	the	page.	The	first	one	is
powered	by	jQuery,	while	the	second	one	is	using	Vue.

Using	jQuery,	we	download	the	items,	select	the	ul	element,	and	then	if	there	are
items,	we	iterate	through	them,	manually	creating	a	list	element,	adding	the	is-
blue	class	if	wanted,	and	setting	the	text	to	be	the	item.	Finally,	we	append	it	to
the	ul	element:

<ul class="js-items">

<script>
 $(function () {
 $.get('https://example.com/items.json')
 .then(function (data) {
 var $itemsUl = $('.js-items');

 if (!data.items.length) {
 var $noItems = $('li');
 $noItems.text('Sorry, there are no items.');
 $itemsUl.append($noItems);
 } else {
 data.items.forEach(function (item) {
 var $newItem = $('li');
 $newItem.text(item);

 if (item.includes('blue')) {

 $newItem.addClass('is-blue');
 }

 $itemsUl.append($newItem);
 });
 }
 });
 });
</script>

This	is	what	the	code	does:

1.	 It	makes	an	Ajax	request	using	$.get().

2.	 It	selects	the	element	matching	.js-items	and	stores	it	in	the	$itemsUl
object.

3.	 If	there	are	no	items	in	the	list	downloaded,	it	creates	an	li	element,
sets	the	text	of	the	li	element	to	indicate	that	there	were	no	items,	and
adds	it	to	the	document.

If	there	are	items	in	the	list,	it	iterates	through	them	in	a	loop.

4.	 For	every	item	in	the	list,	it	creates	an	li	element	and	sets	the	text	to	be
the	item.	Then,	if	the	item	contains	the	string	blue,	it	sets	the	class	of
the	element	to	is-blue.	Finally,	it	adds	the	element	to	the	document.

Every	step	had	to	be	done	manually—every	element	created	and	appended	to	the
document	individually.	We	have	to	read	all	the	way	through	the	code	to	work	out
exactly	what	is	going	on,	and	it	isn’t	obvious	at	all	at	first	glance.

With	Vue,	the	code	providing	the	same	functionality	is	much	simpler	to	read	and
understand—even	if	you’re	not	yet	familiar	with	Vue:

<ul class="js-items">
 <li v-if="!items.length">Sorry, there are no items.
 <li v-for="item in items" :class="{ 'is-blue': item.includes('blue') }">
 {{ item }}

<script>
 new Vue({
 el: '.js-items',
 data: {
 items: []

 },
 created() {
 fetch('https://example.com/items.json')
 .then((res) => res.json())
 .then((data) => {
 this.items = data.items;
 });
 }
 });
</script>

This	code	does	the	following:

1.	 It	makes	an	Ajax	request	using	fetch().

2.	 It	parses	the	response	from	JSON	into	a	JavaScript	object.

3.	 It	stores	the	downloaded	items	in	the	items	data	property.

That’s	all	the	actual	logic	in	the	code.	Now	that	the	items	have	been	downloaded
and	stored,	we	can	use	Vue’s	templating	functionality	to	write	the	elements	to
the	Document	Object	Model	(DOM),	which	is	how	elements	are	represented	on
an	HTML	page.	We	tell	Vue	that	we	want	one	li	element	for	every	item	and	that
the	value	should	be	item.	Vue	handles	the	creation	of	the	elements	and	the
setting	of	the	class	for	us.

Don’t	worry	about	fully	understanding	the	code	example	if	you	don’t	yet.	I’ll
slow	down	and	introduce	the	various	concepts	one	at	a	time	throughout	the	book.

Not	only	is	the	second	example	significantly	shorter,	but	it’s	also	a	lot	easier	to
read,	as	the	actual	logic	of	the	app	is	completely	separated	from	the	view	logic.
Instead	of	having	to	wade	through	some	jQuery	to	work	out	what	is	being	added
when,	we	can	look	at	the	template:	if	there	are	no	items,	a	warning	is	displayed;
otherwise,	the	items	are	displayed	as	list	elements.	The	difference	becomes	even
more	noticeable	with	larger	examples.	Imagine	we	wanted	to	add	a	reload	button
to	the	page	that	would	send	a	request	to	the	server,	get	the	new	items,	and	update
the	page	when	the	user	clicks	a	button.	With	the	Vue	example,	that’s	only	a
couple	of	additional	lines	of	code,	but	with	the	jQuery	example,	things	start	to
get	complicated.

In	addition	to	the	core	Vue	framework,	several	libraries	work	great	with	Vue	and
are	maintained	by	the	same	people	who	maintain	Vue	itself.	For	routing—

displaying	different	content	depending	on	the	URL	of	the	application—there’s
vue-router.	For	managing	state—sharing	data	between	components	in	one	global
store—there’s	vuex,	and	for	unit	testing	Vue	components,	there’s	vue-test-utils.	I
cover	all	three	of	those	libraries	and	give	them	a	proper	introduction	later	in	the
book:	vue-router	in	Chapter	5,	vuex	in	Chapter	6,	and	vue-test-utils	in	Chapter	7.

Installation	and	Setup
You	don’t	need	any	special	tools	to	install	Vue.	The	following	will	do	just	fine:

<div id="app"></div>

<script src="https://unpkg.com/vue"></script>
<script>
 new Vue({
 el: '#app',
 created() {
 // This code will run on startup
 }
 });
</script>

This	example	contains	three	important	things.	First,	there	is	a	div	with	the	ID
app,	which	is	where	we’re	going	to	initiate	Vue	onto—for	various	reasons,	we
can’t	initiate	it	onto	the	body	element	itself.	Then,	we’re	downloading	the	CDN
version	of	Vue	onto	our	page.	You	can	also	use	a	local	copy	of	Vue,	but	for	the
sake	of	simplicity,	we’ll	go	with	this	for	now.	Finally,	we’re	running	some
JavaScript	of	our	own,	which	creates	a	new	instance	of	Vue	with	the	el	property
set	pointing	at	the	div	previously	mentioned.

That	works	great	on	simple	pages,	but	with	anything	more	complicated,	you
probably	want	to	use	a	bundler	such	as	webpack.	Among	other	things,	this	will
allow	you	to	write	your	JavaScript	using	ECMAScript	2015	(and	above),	write
one	component	per	file	and	import	components	into	other	components,	and	write
CSS	scoped	to	a	specific	component	(covered	in	more	detail	in	Chapter	2).

vue-loader	and	webpack
vue-loader	is	a	loader	for	webpack	that	allows	you	to	write	all	the	HTML,

1

JavaScript,	and	CSS	for	a	component	in	a	single	file.	We’ll	be	exploring	it
properly	in	Chapter	2,	but	for	now	all	you	need	to	know	is	how	to	install	it.	If
you	have	an	existing	webpack	setup	or	favorite	webpack	template,	you	can
install	it	by	installing	vue-loader	through	npm,	and	then	adding	the	following	to
your	webpack	loader	configuration:

 module: {
 loaders: [
 {
 test: /\.vue$/,
 loader: 'vue',
 },
 // ... your other loaders ...
]
 }

If	you	don’t	already	have	a	webpack	setup	or	you’re	struggling	with	adding	vue-
loader,	don’t	worry!	I’ve	never	managed	to	set	up	webpack	from	scratch	either.
There	is	a	template	you	can	use	to	set	up	a	vue	project	using	webpack	that
already	has	vue-loader	installed.	You	can	use	it	through	vue-cli:

$ npm install --global vue-cli
$ vue init webpack

You’ll	then	be	asked	a	series	of	questions,	such	as	what	the	project	should	be
called	and	what	dependencies	it	requires,	and	once	you’ve	answered	them,	vue-
cli	will	set	up	a	basic	project	for	you:

Try	this	now,	and	then	follow	the	instruction	it	outputs	to	start	the	server.

Congratulations—you’ve	just	set	up	your	first	Vue	project!

You	can	then	explore	the	generated	files	to	see	what’s	going	on.	Most	of	the
important	stuff	is	happening	in	the	src	directory	in	the	.vue	files.

Templates,	Data,	and	Directives
At	the	heart	of	Vue	is	a	way	to	display	data	on	the	page.	This	is	done	using
templates.	Normal	HTML	is	embellished	using	special	attributes—known	as
directives—that	we	use	to	tell	Vue	what	we	want	to	happen	and	what	it	should
do	with	the	data	we’ve	provided	it.

Let’s	jump	straight	into	an	example.	The	following	example	will	display	“Good
morning!”	in	the	morning,	“Good	afternoon!”	until	6	p.m.,	and	“Good	evening!”
after	that:

<div id="app">
 <p v-if="isMorning">Good morning!</p>
 <p v-if="isAfternoon">Good afternoon!</p>
 <p v-if="isEvening">Good evening!</p>
</div>
<script>

 var hours = new Date().getHours();

 new Vue({
 el: '#app',
 data: {
 isMorning: hours < 12,
 isAfternoon: hours >= 12 && hours < 18,
 isEvening: hours >= 18
 }
 });
</script>

Let’s	talk	about	the	last	bit,	first:	the	data	object.	This	is	how	we	tell	Vue	what
data	we	want	to	display	in	the	template.	We’ve	set	three	properties	of	the	object
—isMorning,	isAfternoon,	and	isEvening—one	of	which	is	true,	and	two	of
which	are	false,	depending	what	time	of	day	it	is.

Then,	in	the	template,	we’re	using	the	v-if	directive	to	show	only	one	of	the
three	greetings,	depending	on	what	the	variable	is	set	to.	The	element	that	v-if
is	set	on	is	displayed	only	if	the	value	passed	to	it	is	truthy;	otherwise,	the
element	is	not	written	to	the	page.	If	the	time	is	2:30	p.m.,	the	following	is
output	to	the	page:

<div id="app">
 <p>Good afternoon!</p>
</div>

NOTE
Although	Vue	has	reactive	functionality,	the	preceding	example	is	not	reactive,	and	the	page
will	not	update	when	the	time	changes.	We’ll	cover	reactivity	in	more	detail	later.

Quite	a	bit	of	duplication	occurs	in	the	previous	example,	though:	it	would	be
better	if	we	could	set	the	time	as	a	data	variable	and	then	do	the	comparison
logic	in	the	template.	Luckily,	we	can!	Vue	evaluates	simple	expressions	inside
v-if:

<div id="app">
 <p v-if="hours < 12">Good morning!</p>
 <p v-if="hours >= 12 && hours < 18">Good afternoon!</p>

 <p v-if="hours >= 18">Good evening!</p>
</div>
<script>
 new Vue({
 el: '#app',
 data: {
 hours: new Date().getHours()
 }
 });
</script>

Writing	code	in	this	manner,	with	the	business	logic	in	the	JavaScript	and	the
view	logic	in	the	template,	means	that	we	can	tell	at	a	glance	exactly	what	will
be	displayed	when	on	the	page.	This	is	a	much	better	approach	than	having	the
code	responsible	for	deciding	whether	to	show	or	hide	the	element	in	some
JavaScript	far	away	from	the	element	in	question.

Later,	we’ll	be	looking	at	computed	properties,	which	we	can	use	to	make	the
preceding	code	a	lot	cleaner—it’s	a	bit	repetitive.

In	addition	to	using	directives,	we	can	also	pass	data	into	templates	by	using
interpolation,	as	follows:

<div id="app">
 <p>Hello, {{ greetee }}!</p>
</div>
<script>
 new Vue({
 el: '#app',
 data: {
 greetee: 'world'
 }
 });
</script>

This	outputs	the	following	to	the	page:

<div id="app">
 <p>Hello, world!</p>
</div>

We	can	also	combine	the	two,	using	both	directives	and	interpolation	to	show
some	text	only	if	it	is	defined	or	useful.	See	if	you	can	figure	out	what	the

following	code	displays	on	the	page	and	when:

<div id="app">
 <p v-if="path === '/'">You are on the home page</p>
 <p v-else>You're on {{ path }}</p>
</div>
<script>
 new Vue({
 el: '#app',
 data: {
 path: location.pathname
 }
 });
</script>

location.pathname	is	the	path	in	the	URL	of	the	page,	so	it	can	be	“/”	when	on
the	root	of	the	site,	or	“/post/1635”	when	somewhere	else	on	the	site.	The
preceding	code	tells	you	whether	you’re	on	the	home	page	of	the	site:	in	a	v-if
directive,	it	tests	whether	the	path	is	equal	to	“/”	(and	the	user	is	therefore	on	the
root	page	of	the	site),	and	then	we’re	introduced	to	a	new	directive,	v-else.	It’s
pretty	simple:	when	used	after	an	element	with	v-if,	it	works	like	the	else
statement	of	an	if-else	statement.	The	second	element	is	displayed	on	the	page
only	when	the	first	element	is	not.

In	addition	to	being	able	to	pass	through	strings	and	numbers,	as	you’ve	seen,
it’s	also	possible	to	pass	other	types	of	data	into	templates.	Because	we	can
execute	simple	expressions	in	the	templates,	we	can	pass	an	array	or	object	into
the	template	and	look	up	a	single	property	or	item:

<div id="app">
 <p>The second dog is {{ dogs[1] }}</p>
 <p>All the dogs are {{ dogs }}</p>
</div>
<script>
 new Vue({
 el: '#app',
 data: {
 dogs: ['Rex', 'Rover', 'Henrietta', 'Alan']
 }
 });
</script>

The	following	is	output	to	the	page:

The second dog is Rover

All the dogs are ["Rex", "Rover", "henrietta", "Alan"]

As	you	can	see,	if	you	output	a	whole	array	or	object	to	the	page,	Vue	outputs
the	JSON-encoded	value	to	the	page.	This	can	be	useful	when	debugging	instead
of	logging	to	console,	as	the	value	displayed	on	the	page	will	update	whenever
the	value	changes.

v-if	Versus	v-show
You	met	v-if	in	the	previous	section	to	show	and	hide	an	element,	but	how	does
it	do	that,	and	what’s	the	difference	between	it	and	the	similar	sounding	v-show?

If	the	value	of	a	v-if	directive	evaluates	to	falsy, 	the	element	isn’t	output	to	the
DOM.

The	following	Vue	template

<div v-if="true">one</div>
<div v-if="false">two</div>

results	in	the	following	output:

<div>one</div>

Compare	that	to	v-show,	which	uses	CSS	to	show	and	hide	the	element.

2

The	following	Vue	template

<div v-show="true">one</div>
<div v-show="false">two</div>

results	in	the	following	output:

<div>one</div>
<div style="display: none">one</div>

Your	users	will	(probably)	see	the	same	thing,	but	other	implications	and
differences	exist	between	the	two.

First,	because	the	inside	element	hidden	using	v-if	isn’t	going	to	be	displayed,
Vue	doesn’t	try	to	generate	the	HTML;	this	isn’t	the	case	with	the	v-show
example.	This	means	that	v-if	is	better	for	hiding	stuff	that	hasn’t	loaded	yet.

In	this	example,	an	error	will	be	thrown:

<div id="app">
 <div v-show="user">
 <p>User name: {{ user.name }}</p>
 </div>
</div>

<script>
 new Vue({
 el: '#app',
 data: {
 user: undefined
 }
 });
</script>

The	reason	the	error	will	be	thrown	is	that	Vue	has	attempted	to	execute
user.name—a	property	of	an	object	that	doesn’t	exist.	The	same	example	using
v-if	works	just	fine,	because	Vue	doesn’t	attempt	to	generate	the	inside	of	the
element	until	the	v-if	statement	is	truthy.

Also,	two	conditionals	are	related	to	v-if:	v-else-if	and	v-else.	They	behave
pretty	much	as	you’d	expect:

<div v-if="state === 'loading'">Loading…</div>
<div v-else-if="state === 'error'">An error occurred</div>
<div v-else>…our content!</div>

The	first	div	displays	if	state	is	loading,	the	second	if	state	is	error,	and	the
third	if	state	is	anything	else.	Only	one	of	the	elements	will	display	at	a	time.

OK,	so	having	seen	that,	why	would	anyone	want	to	use	v-show?

Using	v-if	has	a	performance	cost.	Every	time	an	element	is	added	or	removed,
work	has	to	be	done	to	generate	the	DOM	tree	underneath	it,	which	can
sometimes	be	a	lot	of	stuff.	v-show	has	no	such	cost	beyond	the	initial	setup
cost.	If	you’re	expecting	something	to	change	frequently,	v-show	might	be	the
best	choice.

Also,	if	the	element	contains	any	images,	then	hiding	the	parent	with	only	CSS
allows	the	browser	to	download	the	image	ahead	of	it	being	displayed,	meaning
that	it	can	be	displayed	as	soon	as	v-show	becomes	truthy.	Otherwise,	it
wouldn’t	start	downloading	until	it	was	supposed	to	be	displayed.

Looping	in	Templates
Another	directive	I	find	myself	using	a	lot	is	the	v-for	directive,	which	loops
through	the	elements	of	an	array	or	object,	outputting	the	element	multiple	times.
Take	the	following	example:

<div id="app">

 <li v-for="dog in dogs">{{ dog }}

</div>
<script>
 new Vue({
 el: '#app',
 data: {
 dogs: ['Rex', 'Rover', 'Henrietta', 'Alan']
 }
 });
</script>

That	outputs	every	item	of	the	array	to	the	page	in	list	elements,	like	this:

<div id="app">

 Rex
 Rover
 Henrietta
 Alan

</div>

The	v-for	directive	also	works	with	objects.	Consider	the	following	example,
which	takes	an	object	containing	the	average	rent	of	a	few	cities	and	outputs
them	to	the	page:

<div id="app">

 <li v-for="(rent, city) in averageRent">
 The average rent in {{ city }} is ${{ rent }}

</div>
<script>
 new Vue({
 el: '#app',
 data: {
 averageRent: {
 london: 1650,
 paris: 1730,
 NYC: 3680
 }
 }
 });
</script>

The	syntax	here	is	slightly	different,	because	we	want	to	get	the	key	as	well—
having	just	the	rent	on	the	page	but	not	the	names	of	cities	wouldn’t	be	too
useful.	However,	if	we	don’t	want	the	keys,	we	can	use	the	same	syntax	as
before,	v-for="rent in averageRent".	This	also	applies	to	arrays:	if	we	want
the	index	of	an	array,	we	can	use	the	bracket	and	comma	syntax	that	you	just	saw
with	the	array:	v-for="(dog, i) in dogs".

Note	the	order	of	the	arguments:	it’s	(value, key),	not	the	other	way	around.

Finally,	if	you	just	want	a	simple	counter,	you	can	pass	a	number	in	as	the
argument.	The	following	outputs	the	numbers	1	to	10:

<div id="app">

 <li v-for="n in 10">{{ n }}

</div>
<script>
 new Vue({
 el: '#app'
 });
</script>

You	might	have	expected	the	numbers	0	to	9	to	be	output,	but	that	isn’t	the	case.
To	start	the	list	at	0,	it’s	usually	easier	to	refer	to	n - 1	instead	of	just	n.

Binding	Arguments
Some	directives,	such	as	v-bind,	take	arguments.	The	v-bind	directive	is	used
to	bind	a	value	to	an	HTML	attribute.	For	instance,	the	following	example	binds
the	value	submit	to	the	button	type:

<div id="app">
 <button v-bind:type="buttonType">Test button</button>
</div>
<script>
 new Vue({
 el: '#app',
 data: {
 buttonType: 'submit'
 }
 });
</script>

The	following	is	output	to	the	document:

<button type="submit">Test button</button>

v-bind	is	the	name	of	the	directive,	and	type	is	the	argument:	in	this	case,	the
name	of	the	attribute	we	want	to	bind	the	given	variable	to.	buttonType	is	the
value.

This	also	works	with	properties,	such	as	disabled	and	checked:	if	the

expression	passed	is	truthy,	the	output	element	will	have	the	property,	and	if	it	is
falsy,	the	element	will	not:

<div id="app">
 <button v-bind:disabled="buttonDisabled">Test button</button>
</div>
<script>
 new Vue({
 el: '#app',
 data: {
 buttonDisabled: true
 }
 });
</script>

When	using	v-bind	with	a	lot	of	attributes,	it	can	be	pretty	repetitive	to	write	it
out	multiple	times.	There’s	a	shorter	way	to	write	it:	you	can	omit	the	v-bind
part	of	the	directive	and	use	a	colon.	For	example,	this	is	how	you	would	rewrite
the	preceding	code	example	using	the	shorter	syntax:

<div id="app">
 <button :disabled="buttonDisabled">Test button</button>
</div>
<script>
 new Vue({
 el: '#app',
 data: {
 buttonDisabled: true
 }
 });
</script>

While	your	choice	of	syntax	is	obviously	a	personal	preference,	I	much	prefer
the	shorter	syntax	and	rarely	write	v-bind	in	my	code.

TIP
Whether	you	choose	to	use	v-bind	or	the	shorter	syntax,	try	to	keep	it	consistent.	Using	v-
bind	in	some	places	and	the	shorter	syntax	in	others	can	get	a	bit	confusing.

Reactivity
The	last	few	sections	of	this	chapter	have	shown	how	we	can	use	Vue	to	output
HTML	to	the	DOM	from	values	in	JavaScript—but	so	what?	What	makes	Vue
different	from	any	templating	language?

In	addition	to	creating	the	HTML	in	the	first	place,	Vue	watches	the	data	object
for	changes	and	updates	the	DOM	when	the	data	changes.	To	demonstrate	this,
let’s	make	a	simple	timer	app	that	tells	you	how	long	the	page	has	been	open.
We’ll	need	only	one	variable,	which	we’ll	call	seconds,	and	we’ll	use
setInterval	to	increment	that	variable	once	a	second:

<div id="app">
 <p>{{ seconds }} seconds have elapsed since you opened the page.</p>
</div>
<script>
 new Vue({
 el: '#app',
 data: {
 seconds: 0
 },
 created() {
 setInterval(() => {
 this.seconds++;
 }, 1000);
 }
 });
</script>

The	create	function	runs	when	the	app	is	initiated.	We’ll	cover	the	Vue	life-
cycle	hooks	in	more	detail	later,	so	don’t	worry	about	the	function	too	much	for
now.	this.seconds	in	that	function	refers	directly	to	the	value	in	the	data
object,	and	manipulating	it	updates	the	template.

Here’s	that	example	after	the	page	has	been	open	for	a	bit:

14 seconds have elapsed since you opened the page.

In	addition	to	working	with	interpolation	to	output	the	value	to	the	page,	Vue’s
reactivity	functionality	also	works	when	using	a	property	of	the	data	object	as	an
attribute	to	a	directive.	For	example,	if	in	the	v-bind	example	we	ran

this.buttonDisabled = !this.buttonDisabled;	once	a	second,	we	would
see	that	the	button	disabled	property	would	be	toggled	once	a	second:	the
button	would	be	enabled	for	a	second,	and	then	disabled	for	another.

Reactivity	is	an	extremely	important	feature	and	part	of	what	makes	Vue	so
powerful.	You’ll	be	seeing	it	a	lot	both	in	this	book	and	in	any	Vue	projects	you
work	on.

How	It	Works
This	section	is	a	bit	more	advanced;	feel	free	to	skip	it	and	come	back	to	it	later
if	you	don’t	understand	everything.

Vue’s	reactivity	works	by	modifying	every	object	added	to	the	data	object	so	that
Vue	is	notified	when	it	changes.	Every	property	in	an	object	is	replaced	with	a
getter	and	setter	so	that	you	can	use	the	object	as	a	normal	object,	but	when	you
change	the	property,	Vue	knows	that	it	has	changed.

Take	the	following	object:

const data = {
 userId: 10
};

When	userId	is	changed,	how	do	you	know	it	has	been	changed?	You	could
store	a	copy	of	the	object	and	compare	them	to	each	other,	but	that’s	not	the	most
efficient	way	of	doing	it.	That’s	called	dirty	checking,	and	it’s	the	way	Angular	1
did	it.

Instead,	you	can	override	the	property	by	using	Object.defineProperty():

const storedData = {};

storedData.userId = data.userId;

Object.defineProperty(data, 'userId', {
 get() {
 return storedData.userId;
 },
 set(value) {
 console.log('User ID changed!');
 storedData.userId = value;

 },
 configurable: true,
 enumerable: true
};

This	isn’t	exactly	how	Vue	does	it,	but	it’s	a	good	way	to	think	about	it.

Vue	also	wraps	some	array	methods	such	as	.splice()	on	observed	arrays	with
a	proxy	method	to	observe	when	the	method	is	called.	This	is	so	that	when	you
call	.splice(),	Vue	knows	that	you’ve	updated	the	array,	and	any	necessary
view	updates	can	be	triggered.

For	more	information	on	how	reactivity	works	in	Vue,	check	out	the	“Reactivity
in	Depth”	section	of	the	official	documentation.

Caveats
There	are	some	limitations	to	how	this	works.	Understanding	how	Vue’s
reactivity	works	can	help	you	know	the	caveats,	or	you	could	just	memorize	the
list.	Only	a	few	caveats	exist,	so	it’s	not	too	tricky	to	memorize	them.

Adding	new	properties	to	an	object
Because	the	getter/setter	functions	are	added	when	the	instance	is	initialized,
only	existing	properties	are	reactive;	when	you	add	a	new	property,	it	won’t	be
reactive	if	you	do	it	directly:

const vm = new Vue({
 data: {
 formData: {
 username: 'someuser'
 }
 }
});

vm.formData.name = 'Some User';

While	the	formData.username	property	will	be	reactive	and	respond	to
changes,	the	formData.name	property	will	not.	There	are	a	few	ways	around
this.

The	easiest	way	is	to	define	the	property	on	the	object	on	initialization,	but	with

http://bit.ly/2sLXswZ

a	value	of	undefined.	The	formData	object	in	the	previous	example	would
become	this:

formData: {
 username: 'someuser',
 name: undefined
}

Alternatively—and	this	is	most	useful	if	you’re	updating	multiple	properties	at
the	same	time—you	can	use	Object.assign()	to	create	a	new	object	and
override	the	only	object:

vm.formData = Object.assign({}, vm.formData, {
 name: 'Some User'
});

Finally,	Vue	provides	a	function	called	Vue.set()	that	you	can	use	to	set
reactive	properties:

Vue.set(vm.formData, 'name', 'Some User');

When	inside	a	component,	this	function	is	also	available	as	this.$set.

Setting	items	on	an	array
You	can’t	directly	set	items	on	an	array	by	using	the	index.	The	following	will
not	work:

const vm = new Vue({
 data: {
 dogs: ['Rex', 'Rover', 'Henrietta', 'Alan']
 }
});

vm.dogs[2] = 'Bob'

There	are	two	ways	you	can	do	this	instead.	You	can	use	.splice()	to	remove
the	old	item	and	add	a	new	one:

vm.dogs.splice(2, 1, 'Bob);

Or	you	can	use	Vue.set()	again:

Vue.set(vm.dogs, 2, 'Bob');

Either	way	works	just	as	well.

Setting	the	length	of	an	array
In	JavaScript,	you	can	set	the	length	of	an	array	to	either	pad	it	to	that	length
with	empty	items,	or	to	cut	off	the	end	of	the	array	(depending	on	whether	the	set
length	is	more	or	less	than	the	old	length).	You	can’t	do	that	with	an	array	in	the
data	object,	because	Vue	won’t	be	able	to	detect	any	changes	to	the	array.

You	can	use	splice	instead:

vm.dogs.splice(newLength);

This	works	only	to	shorten	the	array,	not	to	make	it	longer.

Two-Way	Data	Binding
So	far	you’ve	seen	how	we	can	use	our	data	to	write	to	the	template	and	how
Vue’s	reactivity	functionality	means	that	when	the	data	is	updated,	so	is	the
template.	That’s	only	one-way	data	binding,	though.	If	you	tried	the	following,
the	inputText	would	stay	the	same,	and	the	text	below	the	input	element	would
stay	the	same:

<div id="app">
 <input type="text" v-bind:value="inputText">
 <p>inputText: {{ inputText }}</p>
</div>
<script>
 new Vue({
 el: '#app',
 data: {
 inputText: 'initial value'
 }
 });
</script>

To	get	this	example	to	work	as	expected,	you	can’t	use	v-bind:value—using
v-bind	will	update	the	value	of	the	input	only	when	the	inputText	changes,
and	not	vice	versa.	Instead,	you	can	use	the	v-model	directive,	which	works	on
input	elements	to	bind	the	value	of	the	input	to	the	corresponding	property	of	the
data	object	so	that	in	addition	to	the	input	receiving	the	initial	value	of	the	data,
when	the	input	is	updated,	the	data	is	updated	too.	Replacing	the	HTML	part	of
the	previous	example	with	the	following	will	now	update	the	inputText:
initial value	text	when	you	change	the	value	of	the	input	field:

<div id="app">
 <input type="text" v-model="inputText">
 <p>inputText: {{ inputText }}</p>
</div>

It’s	important	to	note	that	when	you	use	v-model,	if	you	set	the	value,	checked,
or	selected	attributes,	they	will	be	ignored.	If	you	want	to	set	the	initial	value
of	the	input,	set	it	in	the	data	object	instead.	See	the	following	example:

<div id="app">
 <input type="text" v-bind:value="inputText" value="initial value">
 <p>inputText: {{ inputText }}</p>
</div>
<script>
 new Vue({
 el: '#app',
 data: {
 inputText: ''
 }
 });
</script>

The	inputText	will	still	be	bound	to	the	inputText	variable,	and	any	text	you
put	in	the	input	box	will	appear	in	the	paragraph	element	below	it.	However,	the
input	will	have	no	initial	value,	as	it	was	set	using	the	value	attribute	instead	of
in	the	data	object,	as	shown	in	the	first	example.

Input	elements,	multiline	text	inputs	(textareas),	select	elements,	and
checkboxes	all	work	basically	as	expected:	the	value	of	the	input	and	the	value
in	the	data	object	are	the	same	(with	checkboxes,	the	value	in	the	data	object	will
be	a	Boolean	value).	With	radio	inputs,	it’s	slightly	different,	as	there	is	more

than	one	element	with	the	same	v-model.	The	name	attribute	will	be	ignored,	and
the	value	stored	in	the	data	will	be	equal	to	the	value	attribute	of	the	currently
selected	radio	input:

<div id="app">
 <label><input type="radio" v-model="value" value="one"> One</label>
 <label><input type="radio" v-model="value" value="two"> Two</label>
 <label><input type="radio" v-model="value" value="three"> Three</label>

 <p>The value is {{ value }}</p>
</div>
<script>
 new Vue({
 el: '#app',
 data: {
 value: 'one'
 }
 });
</script>

When	the	first	checkbox	is	selected,	the	value	of	value	is	one;	when	the	second
is	selected,	it	is	two,	and	so	on.	Although	you	can	still	use	the	name	attribute,
Vue	will	ignore	it,	and	the	radio	buttons	will	act	normally	(with	only	one	being
checked	at	a	time)	without	it.

Setting	HTML	Dynamically
Sometimes	you	might	want	to	set	the	HTML	of	an	element	from	an	expression.
Let’s	say	you’re	calling	an	API	that	is	returning	some	HTML	which	you	need	to
display	on	the	page.	In	an	ideal	world,	the	API	would	return	a	JSON	object	that
you	could	pass	to	Vue	and	handle	the	template	yourself,	but—it	happens.	Vue
has	automatic	HTML	escaping	built	in,	so	if	you	try	to	write	{{ yourHtml }},
the	HTML	characters	will	be	escaped—it’ll	look	like
this	in	the	source—and	it	will	appear	as	the	HTML
text	sent	down	from	the	API	on	the	page.	Not	ideal!

If	you	want	to	take	HTML	and	display	it	on	the	page,	you	can	use	the	v-html
directive	as	follows:

<div v-html="yourHtml"></div>

Then,	whatever	HTML	is	contained	in	yourHtml	will	be	written	directly	to	the
page	without	being	escaped	first.

Be	careful	with	this!	By	writing	HTML	to	the	page	from	a	variable,	you	are
potentially	opening	yourself	up	to	XSS	vulnerabilities. 	Never	put	user	input	in
v-html	or	allow	users	to	modify	anything	that	goes	through	v-html	without
carefully	validating	and	escaping	what	they’ve	written	first.	You	could
accidentally	allow	your	users	to	execute	malicious	script	tags	on	your	site.	Use
v-html	only	with	data	you	trust.

Methods
This	section	explains	how	to	use	methods	in	Vue	to	make	functions	available	in
your	templates	in	order	to	perform	manipulations	on	your	data.

Functions	are	pretty	neat.	They	allow	us	to	take	a	piece	of	logic	and	store	it	in	a
reusable	way	so	that	we	can	use	it	multiple	times	without	repeating	the	code.	It’s
possible	to	use	them	in	your	Vue	templates	too,	as	methods.	As	shown	in	the
following	example,	storing	a	function	as	a	property	of	the	methods	object	makes
it	available	in	your	templates:

<div id="app">
 <p>Current status: {{ statusFromId(status) }}</p>
</div>
<script>
 new Vue({
 el: '#app',
 data: {
 status: 2
 },
 methods: {
 statusFromId(id) {
 const status = ({
 0: 'Asleep',
 1: 'Eating',
 2: 'Learning Vue'
 })[id];

 return status || 'Unknown status: ' + id;
 }
 }
 });

3

</script>

This	turns	a	number	representing	the	status—possibly	supplied	in	another	step
by	an	API—into	a	human-readable	string	indicating	the	actual	status.	You	can
add	methods	by	specifying	them	as	properties	of	the	methods	object.

In	addition	to	being	able	to	use	methods	in	interpolations,	you	can	use	them	in
bound	attributes—and	really,	anywhere	that	you	can	use	JavaScript	expressions.
Here’s	a	short	example:

<div id="app">

 <li v-for="number in filterPositive(numbers)">{{ number }}

</div>
<script>
 new Vue({
 el: '#app',
 data: {
 numbers: [-5, 0, 2, -1, 1, 0.5]
 },
 methods: {
 filterPositive(numbers) {
 return numbers.filter((number) => number >= 0);
 }
 }
 });
</script>

The	method	takes	an	array	and	returns	a	new	array	with	all	the	negative	numbers
removed,	so	in	this	example,	we	get	a	list	of	positive	numbers	output	to	the	page.

We	looked	at	reactivity	previously,	and	you’ll	be	glad	to	know	that	it	applies
here	too.	If	numbers	is	changed—for	example,	if	a	number	is	added	or	removed
—the	method	will	be	called	again	with	the	new	numbers,	and	the	information
outputted	to	the	page	will	be	updated.

this
In	a	method,	this	refers	to	the	component	that	the	method	is	attached	to.	You
can	access	properties	on	the	data	object	and	other	methods	by	using	this:

<div id="app">
 <p>The sum of the positive numbers is {{ getPositiveNumbersSum() }}</p>
</div>
<script>
 new Vue({
 el: '#app',
 data: {
 numbers: [-5, 0, 2, -1, 1, 0.5]
 },
 methods: {
 getPositiveNumbers() {
 // Note that we're now using this.numbers
 // to refer directly to the data object.
 return this.numbers.filter((number) => number >= 0);
 },
 getPositiveNumbersSum() {
 return this.getPositiveNumbers().reduce((sum, val) => sum + val);
 }
 }
 });
</script>

Here,	this.numbers	in	getPositiveNumbers	refers	to	the	numbers	array	in	the
data	object	that	we	were	previously	passing	in	as	an	argument;
this.getPositiveNumbers()	refers	to	the	other	method	with	that	name.

You’ll	see	in	future	sections	that	you	can	access	other	things	by	using	this	too.

Computed	Properties
Computed	properties	sit	halfway	between	properties	of	the	data	object	and
methods:	you	can	access	them	as	if	they	were	properties	of	the	data	object,	but
they	are	specified	as	functions.

Check	out	the	following	example,	which	takes	the	data	stored	as	numbers,	adds
them	all	together,	and	outputs	the	total	to	the	page:

<div id="app">
 <p>Sum of numbers: {{ numberTotal }}</p>
</div>
<script>
 new Vue({
 el: '#app',
 data: {

 numbers: [5, 8, 3]
 },
 computed: {
 numberTotal() {
 return numbers.reduce((sum, val) => sum + val);
 }
 }
 });
</script>

Although	we	could	write	the	entire	statement	to	calculate	the	total	in	the
template,	it’s	much	more	convenient	and	readable	to	have	it	defined	elsewhere.
We	can	also	access	it	in	methods,	other	computed	properties,	and	anywhere	else
in	the	component	by	using	this.	As	with	methods,	when	numbers	changes,
numberTotal	changes	too,	and	the	change	is	reflected	in	the	template.

But	what’s	the	difference	between	using	computed	properties	and	methods,	aside
from	the	obvious	syntax	difference?	Well,	there	are	a	couple.

The	first	is	that	computed	properties	are	cached:	if	you	call	a	method	multiple
times	in	a	template,	the	code	inside	the	method	will	be	run	every	single	time	the
method	is	called,	whereas	if	a	computed	property	is	called	multiple	times,	the
code	inside	will	be	run	only	once,	and	every	time	after	that,	the	cached	value
will	be	used.	The	code	will	be	run	again	only	when	a	dependency	of	the	method
changes:	for	example,	in	the	previous	code	sample,	if	we	push	a	new	item	to
basketItems,	the	code	inside	basketTotal	is	run	again	to	get	the	new	value.
This	is	good	if	you’re	doing	something	potentially	resource	intensive,	as	it
ensures	that	the	code	will	not	be	run	more	than	necessary.

You	can	see	this	behavior	by	adding	a	console.log()	statement	to	a	computed
property	that	is	repeatedly	called.	You	can	observe	that	the	console.log()
statement,	and	thus	the	entire	computed	property,	is	evaluated	only	when	the
value	changes:

<script>
 new Vue({
 el: '#app',
 data: () => ({
 value: 10,
 }),
 computed: {
 doubleValue() {

 console.log('doubleValue computed property changed');

 return this.value * 2;
 }
 }
 });
</script>

The	string	will	be	logged	to	the	console	only	once	when	the	app	is	initialized	and
once	every	time	value	changes.

The	other	difference	between	computed	properties	and	methods	is	that	in
addition	to	being	able	to	get	values	of	computed	properties,	as	shown	in	the
previous	example,	it’s	possible	to	set	values	on	computed	properties	and	do
something	with	the	set	value.	You	can	do	that	by	changing	the	computed
property	from	a	function	to	an	object	with	get	and	set	properties.	For	example,
let’s	say	we	want	to	add	the	ability	to	add	new	items	to	the	numbers	array	by
adding	or	subtracting	them	from	numberTotal.	We	can	do	that	by	adding	a	setter
that	will	compare	the	new	value	to	the	old	value,	and	then	append	the	difference
to	the	numbers	array:

<div id="app">
 <p>Sum of numbers: {{ numberTotal }}</p>
</div>
<script>
 new Vue({
 el: '#app',
 data: {
 numbers: [5, 8, 3]
 },
 computed: {
 numberTotal: {
 get() {
 return numbers.reduce((sum, val) => sum + val);
 },
 set(newValue) {
 const oldValue = this.numberTotal;
 const difference = newValue - oldValue;
 this.numbers.push(difference).
 }
 }
 }
 });
</script>

Now,	calling	this.numberTotal += 5	somewhere	else	in	the	component	will
cause	the	number	5	to	be	added	to	the	end	of	the	numbers	array—neat!

THE	DATA	OBJECT,	METHODS,	OR	COMPUTED
PROPERTIES?

You’ve	met	the	data	object,	where	you	can	store	data	such	as	strings,	arrays,
and	objects	in	an	object;	you’ve	met	methods,	where	you	can	store	functions
and	call	them	from	your	templates;	and	you’ve	met	computed	properties,
where	you	can	store	functions	and	call	them	as	if	they	were	properties	in	the
data	object.	But	which	should	you	use,	and	when?

Each	has	its	uses	and	is	best	used	in	combination	with	one	another,	but	some
of	them	are	better	for	certain	tasks	than	others.	For	example,	if	you’re
accepting	an	argument,	you	definitely	want	to	use	a	method,	not	data	or	a
computed	property:	neither	of	them	can	accept	arguments.

The	data	object	is	best	for	pure	data:	you	want	to	put	data	somewhere	to	use
in	your	template	or	in	a	method	or	computed	property,	and	you	want	to	leave
it	there.	You	might	update	it	later.

Methods	are	best	when	you	want	to	add	functions	to	your	templates:	you
pass	them	data,	and	they	do	something	with	that	data	and	possibly	return
different	data.

Computed	properties	are	best	for	performing	more-complicated	expressions
that	you	wouldn’t	want	to	be	using	in	your	template	because	they’re	too	long
or	you’d	have	to	repeat	yourself	too	often.	They	usually	work	with	other
computed	properties	or	your	data.	They’re	basically	like	an	extended,	more
powerful	version	of	the	data	object.

You	can	compare	the	different	ways	of	working	with	data—the	data	object,
methods,	and	computed	properties—in	Table	1-1.

Table	1-1.	The	data	object	versus	methods	versus	computed	properties

Readable? Writable? Accepts
arguments? Computed? Cached?

N/A,	as	it’s

The	data	object Yes Yes No No not	computed

Methods Yes No Yes Yes No

Computed
properties Yes Yes No Yes Yes

This	may	look	daunting,	but	it’s	something	that’s	easy	to	get	a	hang	of
through	use!

Watchers
Watchers	allow	us	to	watch	a	property	of	the	data	object	or	a	computed	property
for	changes.

If	you’re	coming	to	Vue	from	another	framework,	you	may	have	been
wondering	how	to	watch	something	for	changes	and	waiting	for	this	feature.	Be
careful,	though!	In	Vue,	there’s	usually	a	better	way	to	do	something	than	to	use
a	watcher—usually,	using	a	computed	property.	For	example,	instead	of	setting
data	and	then	watching	it	for	changes,	using	a	computed	property	with	a	setter	is
a	much	better	way	to	do	it.

Watchers	are	easy	to	use:	just	specify	the	name	of	the	property	to	watch.	For
example,	to	watch	this.count	for	changes:

<script>
 new Vue({
 el: '#app',
 data: {
 count: 0
 },
 watchers: {
 count() {
 // this.count has been changed!
 }
 }
 });
</script>

Although	most	simple	examples	don’t	require	watchers,	they	are	good	for

performing	asynchronous	operations.	For	example,	let’s	say	we	have	an	input
that	a	user	can	type	in,	but	we	want	to	display	on	the	page	what	was	in	the	input
five	seconds	ago.	To	do	that,	you	can	use	v-model	to	sync	the	value	of	the	input
to	your	data	object,	and	then	watch	that	value	for	changes	and	in	the	watcher
write	the	value	to	another	property	of	the	data	object	after	a	delay:

<div id="app">
 <input type="text" v-model="inputValue">

 <p>Five seconds ago, the input said "{{ oldInputValue }}".</p>
</div>
<script>
 new Vue({
 el: '#app',
 data: {
 inputValue: '',
 oldInputValue: ''
 },
 watch: {
 inputValue() {
 const newValue = this.inputValue;

 setTimeout(() => {
 this.oldInputValue = newValue;
 }, 5000);
 }
 }
 });
</script>

Note	that	in	this	example,	we’re	writing	this.inputValue	to	a	variable	local	to
that	function:	this	is	because	otherwise,	when	the	function	given	to	setTimeout
is	called,	this.inputValue	will	have	updated	to	the	latest	value!

Watching	Properties	of	Objects	in	the	Data	Object
Sometimes	you	might	have	a	whole	object	stored	in	your	data	object.	To	watch	a
property	of	that	object	for	changes,	you	can	specify	the	watcher	name	with	dots
in	it,	as	if	you	were	reading	the	object:

new Vue({
 data: {
 formData: {

 username: ''
 }
 },
 watch: {
 'formData.username'() {
 // this.formData.username has changed
 }
 }
});

Getting	the	Old	Value
Watchers	are	passed	two	arguments	when	their	watched	property	is	changed:	the
new	value	of	the	watched	property,	and	the	old	value.	This	can	be	useful	for
seeing	what	has	changed:

watch: {
 inputValue(val, oldVal) {
 console.log(val, oldVal);
 }
}

val	equals	(in	this	case)	this.inputValue.	I	usually	find	myself	using	the	latter
instead.

Deep	Watching
When	watching	an	object,	you	might	want	to	watch	the	entire	object	for	changes,
not	just	the	property.	By	default,	the	watcher	won’t	fire	if	you’re	watching
formData	and	you	modify	formData.username;	it	will	fire	only	if	you	replace
the	entire	formData	property.

Watching	the	entire	object	is	known	as	a	deep	watch,	and	we	can	tell	Vue	to	do
this	by	setting	the	deep	option	to	true:

watch: {
 formData: {
 handler() {
 console.log(val, oldVal);
 },
 deep: true
 }
}

Filters
Filters,	also	often	seen	in	other	templating	languages,	are	a	convenient	way	of
manipulating	data	in	your	templates.	I	find	them	great	for	making	simple	display
changes	to	strings	and	numbers:	for	example,	changing	a	string	to	the	correct
case	or	displaying	a	number	in	a	human-readable	format.

Take	the	following	code	sample:

<div id="app">
 <p>Product one cost: ${{ (productOneCost / 100).toFixed(2) }}</p>
 <p>Product two cost: ${{ (productTwoCost / 100).toFixed(2) }}</p>
 <p>Product three cost: ${{ (productThreeCost / 100).toFixed(2) }}</p>
</div>
<script>
 new Vue({
 el: '#app',
 data: {
 productOneCost: 998,
 productTwoCost: 2399,
 productThreeCost: 5300
 }
 });
</script>

It	works,	but	there’s	a	lot	of	duplication.	For	every	item,	we’re	doing	the	math	to
convert	it	from	cents	to	dollars,	displaying	it	to	two	decimal	places,	and	adding
the	dollar	sign.	Although	we	can	definitely	split	that	logic	into	a	method,	this
time	we’ll	split	that	logic	into	a	filter,	as	it’s	more	readable	and	can	be	added
globally:

<div id="app">
 <p>Product one cost: {{ productOneCost | formatCost }}</p>
 <p>Product two cost: {{ productTwoCost | formatCost }}</p>
 <p>Product three cost: {{ productThreeCost | formatCost }}</p>
</div>
<script>
 new Vue({
 el: '#app',
 data: {
 productOneCost: 998,
 productTwoCost: 2399,
 productThreeCost: 5300
 },
 filters: {

 formatCost(value) {
 return '$' + (value / 100).toFixed(2);
 }
 }
 });
</script>

That’s	a	lot	better—much	less	duplication,	much	easier	to	read,	and	much	more
maintainable.	Now	if	we	decide	we	want	to	add	logic	to	it—say,	we	want	to	add
currency	conversion	functionality—we	have	to	do	it	only	once	instead	of
changing	the	code	every	place	it	is	used.

You	can	use	multiple	filters	in	the	same	expression	by	chaining	them	together.
For	example,	if	we	have	a	round	filter	that	rounds	a	number	to	the	nearest
integer,	you	could	use	both	filters	together	by	writing	{{ productOneCost |
round | formatCost }}.	The	round	filter	would	be	called	first,	and	then	the
value	returned	by	that	filter	would	be	passed	to	the	formatCost	filter	and	output
to	the	page.

Filters	can	also	take	arguments.	In	the	following	example,	the	given	string	would
be	passed	into	the	filter	function	as	the	second	argument:

<div id="app">
 <p>Product one cost: {{ productOneCost | formatCost('$') }}</p>
</div>
<script>
 new Vue({
 el: '#app',
 data: {
 productOneCost: 998,
 },
 filters: {
 formatCost(value, symbol) {
 return symbol + (value / 100).toFixed(2);
 }
 }
 });
</script>

In	addition	to	working	with	interpolation,	you	can	use	filters	with	v-bind	when
binding	values	to	arguments:

<div id="app">

 <input type="text" v-bind:value="productCost | formatCost('$')">
</div>

You	can	also	use	Vue.filter()	to	register	filters	instead	of	on	a	per-component
basis:

Vue.filter('formatCost', function (value, symbol) {
 return symbol + (val / 100).toFixed(2);
});

This	is	good	for	registering	filters	that	you’re	going	to	use	all	over	your	app.	I
generally	stick	all	of	my	filters	in	a	separate	file	called	filters.js.

Using	filters	carries	two	small	caveats.	The	first	is	that	filters	are	the	only	place
where	you	can’t	use	this	to	refer	to	methods	and	data	on	the	components.	This
is	intentional:	it’s	because	filters	are	supposed	to	be	pure	functions,	meaning	that
the	function	takes	input	and	returns	the	same	output	every	time	without	referring
to	any	external	data.	If	you	want	to	access	other	data	in	a	filter,	pass	it	in	as	an
argument.

The	other	caveat	is	that	you	can	use	filters	only	in	interpolations	and	v-bind
directives.	In	Vue	1,	it	was	possible	to	use	them	anywhere	you	could	use
expressions;	for	example,	in	v-for	directives:

<li v-for="item in items | filterItems">{{ item }}

This	is	no	longer	the	case	in	Vue	2,	and	you’ll	have	to	use	a	method	or	computed
property	in	the	preceding	case.

Accessing	Elements	Directly	Using	ref
Sometimes	you	might	find	yourself	needing	to	access	an	element	directly	in	the
DOM;	maybe	you’re	using	a	third-party	library	that	isn’t	written	to	work	with
Vue,	or	maybe	you	want	to	do	something	that	Vue	can’t	quite	handle	itself.	You
can	use	ref	to	access	the	element	directly	without	having	to	use	querySelector
or	one	of	the	other	native	ways	to	select	an	element	from	the	DOM.

To	access	an	element	using	a	ref,	set	the	ref	attribute	of	the	element	to	a	string

that	you	can	access	the	element	using:

<canvas ref="myCanvas"></canvas>

Then	in	your	JavaScript,	the	element	will	be	stored	on	the	this.$refs	object	as
whatever	you	set	the	ref	attribute	to.	In	this	case,	you	can	access	it	by	using
this.$refs.myCanvas.

Using	ref	is	especially	useful	in	components.	It’s	possible	that	the	same	code
could	appear	multiple	times	in	the	same	page,	meaning	that	you	can’t	add	a
unique	class	and	use	querySelector	at	all.	this.$refs	contains	only	the	refs
for	the	current	component,	meaning	that	if	you	call	this.$refs.blablabla	in	a
component,	it	will	always	refer	to	the	element	in	that	component,	not	anywhere
else	in	the	document.

Inputs	and	Events
Until	this	point,	pretty	much	everything	you’ve	seen	has	been	about	displaying
data—we	haven’t	made	anything	that	interactive	yet.	Now,	I’ll	introduce	you	to
event	binding	in	Vue.

To	bind	an	event	listener	to	an	element,	you	can	use	the	v-on	directive.	It	takes
the	name	of	the	event	as	the	argument,	and	the	event	listener	as	the	passed	value.
For	example,	to	increase	the	value	of	counter	by	one	when	a	button	is	clicked,
you	can	write	the	following:

<button v-on:click="counter++">Click to increase counter</button>
<p>You've clicked the button {{ counter }}</p> times.

You	can	also	provide	the	name	of	a	method	that	will	be	called	when	the	button	is
clicked:

<div id="app">
 <button v-on:click="increase">Click to increase counter</button>
 <p>You've clicked the button {{ counter }}</p> times.
</div>

<script>
 new Vue({

 el: '#app',
 data: {
 counter: 0
 },
 methods: {
 increase(e) {
 this.counter++;
 }
 }
 });
</script>

That	works	the	same	as	the	previous	example.

One	significant	difference	between	using	a	method	and	putting	the	code	inline	is
that	if	you	use	a	method,	the	event	object	is	passed	in	as	the	first	argument.	This
event	object	is	the	native	DOM	event	that	you	would	get	if	you	had	added	the
event	listener	by	using	JavaScript’s	built-in	.addEventListener()	method	and
can	be	useful,	for	getting	the	keyCode	of	a	keyboard	event,	for	example.

You	can	access	the	event	when	writing	code	inline,	too,	as	the	$event	variable.
This	can	be	useful	when	you’re	adding	the	same	event	listener	to	multiple
elements	and	want	to	know	which	one	it	was	triggered	from.

The	v-on	Shortcut
Similarly	to	the	v-bind	directive,	v-on	also	has	a	shorter	way	of	writing	it.
Instead	of	writing	v-on:click,	you	can	write	just	@click.

This	is	the	same	as	the	previous	example:

<button @click="increase">Click to increase counter</button>

I	nearly	always	use	the	short	version	instead	of	writing	v-on.

Event	Modifiers
You	can	also	do	a	load	of	things	to	modify	the	event	handler	or	the	event	itself.

To	prevent	the	default	action	of	the	event	from	happening—for	example,	to	stop
a	page	navigation	from	happening	when	a	link	is	clicked—you	can	use	the

.prevent	modifier:

<a @click.prevent="handleClick">...

To	stop	the	event	from	propagating	so	that	the	event	isn’t	triggered	on	the	parent
elements,	you	can	use	the	.stop	modifier:

<button @click.stop="handleClick">...</button>

To	have	the	event	listener	be	triggered	only	the	first	time	the	event	is	fired,	you
can	use	the	.once	modifier:

<button @click.once="handleFirstClick">...</button>

To	use	capture	mode,	meaning	that	the	event	will	be	triggered	on	this	element
before	it	is	dispatched	on	the	elements	below	it	in	the	tree	(versus	bubble	mode,
in	which	it’s	fired	on	the	element	first	and	then	bubbles	up	the	DOM),	you	can
use	the	.capture	modifier:

<div @click.capture="handleCapturedClick">...</div>

To	trigger	the	handler	when	the	event	was	triggered	on	the	element	itself,	not	a
child	element	(basically,	when	event.target	is	the	element	the	handler	is	being
added	to)	you	can	use	the	.self	modifier:

<div @click.self="handleSelfClick">...</div>

You	can	also	specify	just	the	event	and	modifier	without	giving	it	a	value,	and
you	can	chain	modifiers	together.	For	example,	the	following	will	stop	a	click
event	from	propagating	any	further	down	the	tree—but	only	the	first	time:

<div @click.stop.capture.once></div>

In	addition	to	those	event	modifiers,	there	are	also	key	modifiers.	These	are	used
on	keyboard	events	so	that	you	can	fire	the	event	only	when	a	certain	key	is
pressed.	Consider	the	following:

<div id="app">
 <form @keyup="handleKeyup">...</form>
</div>

<script>
 new Vue({
 el: '#app',
 methods: {
 handleKeyup(e) {
 if (e.keyCode === 27) {
 // do something
 }
 }
 }
 });
</script>

The	code	inside	the	if	statement	will	run	only	when	the	key	with	keyCode	27—
the	Escape	key—is	pressed.	However,	Vue	has	a	way	to	do	this	built	in	as	a
modifier.	You	can	specify	the	key	code	as	the	modifier,	like	so:

<form @keyup.27="handleEscape">...</form>

Now,	handleEscape	will	be	be	triggered	only	when	the	Escape	key	is	pressed.
Aliases	are	also	available	for	the	most	used	keys:	.enter,	.tab,	.delete,	.esc,
.space,	.up,	.down,	.left,	and	.right.	Instead	of	writing	@keyup.27	and
having	to	remember	which	key	27	is,	you	can	just	write	@keyup.esc.

As	of	Vue	2.5.0,	you	can	use	any	key	name	from	the	key	property	of	the	event.
For	example,	when	you	press	the	left	Shift	key,	e.key	equals	ShiftLeft.	To
listen	for	when	the	Shift	key	is	released,	you	can	use	the	following:

<form @keyup.shift-left="handleShiftLeft">...</form>

Similar	to	the	key	modifiers,	three	mouse	button	modifiers	can	be	added	to
mouse	events:	.left,	.middle,	and	.right.

Some	modifiers	exist	for	modifier	keys	such	as	Ctrl	and	Shift:	.ctrl,	.alt,
.shift,	and	.meta.	The	first	three	modifiers	are	fairly	self-explanatory,	but
.meta	is	less	clear:	on	Windows,	it’s	the	Windows	key,	and	on	macOS,	it	is	the
Command	key.

Finally,	an	.exact	operator	will	trigger	the	event	handler	only	if	the	specified
keys	and	no	other	keys	are	pressed.	For	example:

<input @keydown.enter.exact="handleEnter">

That	will	fire	when	Enter	is	pressed,	but	not	when	any	other	keys—for	example,
Command-Enter	or	Ctrl-Enter—are	pressed.

Life-Cycle	Hooks
You’ve	seen	a	couple	of	times	now	that	if	you	specify	a	function	as	the	created
property	on	a	component	or	your	Vue	instance,	it	is	called	when	the	component
is,	well,	created.	This	is	an	example	of	what’s	known	as	a	life-cycle	hook,	a
series	of	functions	that	are	called	at	various	points	throughout	the	life	cycle	of	a
component—all	the	way	from	when	it	created	and	added	the	DOM,	to	when	it	is
destroyed.

Vue	has	eight	life-cycle	hooks,	but	they’re	pretty	easy	to	remember	because	four
of	them	are	just	before	hooks	that	are	fired	before	the	other	ones.

Here’s	the	basic	life	cycle	of	an	object:	first,	the	Vue	instance	is	initiated	when
new Vue()	is	called.	The	first	hook,	beforeCreate,	is	called,	and	reactivity	is
initiated.	Then	the	created	hook	is	called—you	can	see	how	this	works	with	the
hook	names.	The	“before”	hook	is	called	before	the	thing	that	triggers	the	hook
happens,	and	then	the	actual	hook	is	called	afterward.	Next,	the	template	is
compiled—either	from	the	template	or	render	options,	or	from	the	outerHTML
of	the	element	that	Vue	was	initialized	to.	The	DOM	element	is	now	ready	to	be
created,	so	the	beforeMount	hook	is	fired,	the	element	is	created,	and	then	the
mounted	hook	is	fired.

One	thing	to	be	careful	of	is	that	as	of	Vue	2.0,	the	mounted	hook	doesn’t
guarantee	that	the	element	has	been	added	to	the	DOM.	To	make	sure	that	it	has
been	added,	you	can	call	Vue.nextTick()	(also	available	as
this.$nextTick())	with	a	callback	method	containing	the	code	you	want	to	run
after	the	element	is	definitely	added	to	the	DOM.	For	example:

<div id="app">

 <p>Hello world</p>
</div>

<script>
 new Vue({
 el: '#app',
 mounted() {
 // Element might not have been added to the DOM yet

 this.$nextTick(() => {
 // Element has definitely been added to the DOM now
 });
 }
 });
</script>

Four	hooks	have	been	fired	so	far,	as	the	instance	is	initialized	and	then	added	to
the	DOM,	and	our	users	can	now	see	our	component.	Maybe	our	data	updates,
though,	so	the	DOM	is	updated	to	reflect	that	change.	Before	the	change	is
made,	another	hook	is	fired,	beforeUpdate,	and	afterward,	the	updated	hook	is
fired.	This	hook	can	be	fired	multiple	times	as	multiple	changes	to	the	DOM	are
made.

Finally,	we’ve	witnessed	the	creation	and	life	of	our	component,	but	it’s	time	for
it	to	go.	Before	it	is	removed	from	the	DOM,	the	beforeDestroy	hook	is	fired,
and	after	it	has	been	removed,	the	destroyed	hook	is	fired.

Those	are	all	the	hooks	that	are	fired	throughout	the	life	cycle	of	a	Vue	instance.
Here	they	are	again,	but	this	time	from	the	point	of	view	of	the	hooks,	not	the
instance:

beforeCreate	is	fired	before	the	instance	is	initialized.

created	is	fired	after	the	instance	has	been	initialized	but	before	it	is
added	to	the	DOM.

beforeMount	is	fired	after	the	element	is	ready	to	be	added	to	the	DOM
but	before	it	has	been.

mounted	is	fired	after	the	element	has	been	created	(but	not	necessarily
added	to	the	DOM:	use	nextTick	for	that).

beforeUpdate	is	fired	when	there	are	changes	to	be	made	to	the	DOM
output.

updated	is	fired	after	changes	have	been	written	to	the	DOM.

beforeDestroy	is	fired	when	the	component	is	about	to	be	destroyed
and	removed	from	the	DOM.

destroyed	is	fired	after	the	component	has	been	destroyed.

While	there	do	seem	to	be	a	lot	of	hooks,	you	have	to	remember	only	four
(created,	mounted,	updated,	and	destroyed),	and	you	can	work	out	the	other
four	from	there.

Custom	Directives
In	addition	to	the	built-in	directives	such	as	v-if,	v-model,	and	v-html,	it’s
possible	to	create	your	own	custom	directives.	Directives	are	great	for	times
when	you	want	to	do	something	directly	with	the	DOM—if	you	find	that	you’re
not	accessing	the	DOM,	you’d	probably	be	better	off	with	a	component	instead.

As	a	simple	example,	let’s	build	a	v-blink	directive,	which	simulates	the
behavior	of	the	<blink>	tag.	We’ll	be	able	to	use	it	like	this:

<p v-blink>This content will blink</p>

Adding	a	directive	is	similar	to	adding	a	filter:	you	can	pass	it	in	the	directives
property	of	your	Vue	instance	or	component,	or	else	you	can	register	it	globally
using	Vue.directive().	You	pass	the	name	of	the	directive,	plus	an	object
containing	hook	functions	that	are	run	at	various	points	through	the	life	of	the
element	the	directive	has	been	added	to.

The	five	hook	functions	are	bind,	inserted,	update,	componentUpdated,	and
unbind.	I’ll	explain	them	all	in	moment,	but	for	now	we’re	just	going	to	use	the
bind	hook,	which	is	called	when	the	directive	is	bound	to	the	element.	In	the
hook,	we’ll	toggle	the	visibility	of	the	element	once	a	second:

Vue.directive('blink', {

 bind(el) {
 let isVisible = true;
 setInterval(() => {
 isVisible = !isVisible;
 el.style.visibility = isVisible ? 'visible' : 'hidden';
 }, 1000);
 }
});

Now,	any	element	the	directive	is	applied	to	will	blink	once	a	second—just	what
we	wanted.

Directives	have	multiple	hook	functions,	just	as	the	Vue	instance	and
components	have	life-cycle	hooks.	They’re	named	differently	and	don’t	do
exactly	the	same	thing	as	the	life-cycle	hooks,	so	let’s	go	through	what	they	do
now:

The	bind	hook	is	called	when	the	directive	is	bound	to	the	element.

The	inserted	hook	is	called	when	the	bound	element	has	been	inserted
into	its	parent	node—but	just	as	with	mounted,	this	doesn’t	guarantee
that	the	element	has	been	added	to	the	document	yet.	Use
this.$nextTick	for	that.

The	update	hook	is	called	when	the	parent	of	the	component	the
directive	is	bound	to	is	updated,	but	possibly	before	the	component’s
children	have	updated.

The	componentUpdated	hook	is	similar	to	the	update	hook,	but	is
called	after	the	component’s	children	have	updated	too.

The	unbind	hook	is	used	for	teardown,	and	is	called	when	the	directive
is	unbound	from	the	element.

You	don’t	have	to	call	all	the	hooks	every	time.	In	fact,	they’re	all	optional,	so
you	don’t	have	to	call	any	of	them.

I	find	myself	most	commonly	using	the	bind	and	update	hooks.	Conveniently,
if	you	want	to	use	just	those	two	hooks,	there’s	a	shorthand	way	of	doing	it—you
can	omit	the	object	and	specify	a	function	that	will	be	used	as	both	hooks,	as	the
argument:

Vue.directive('my-directive', (el) => {
 // This code will run both on "bind" and "update"
});

Hook	Arguments
You’ve	seen	before	that	directives	accept	arguments	(v-bind:class),	modifiers
(v-on.once),	and	values	(v-if="expression").	It’s	possible	to	access	all	of
these	by	using	the	second	argument	passed	to	the	hook	function,	binding.

If	using	v-my-directive:example.one.two="someExpression"	to	call	our
directive,	the	binding	object	will	contain	the	following	properties:

The	name	property	is	the	name	of	the	directive	without	the	v-.	In	this
case,	it’s	my-directive.

The	value	property	is	the	value	passed	to	the	directive.	In	this	case,	it
would	be	whatever	someExpression	evaluates	to.	For	example,	if	the
data	object	were	equal	to	{ someExpression: hello world },	value
would	equal	hello world.

The	oldValue	property	is	the	previous	value	passed	to	the	directive.	It’s
available	only	in	update	and	componentUpdated.	With	our	example,	if
we	had	a	different	value	for	someExpression,	the	update	hook	would
be	called	with	the	new	value	as	value	and	the	old	value	as	oldValue.

The	expression	property	is	the	value	of	the	attribute	as	a	string	before
evaluation.	In	this	case,	it	would	literally	be	someExpression.

The	arg	property	is	the	argument	passed	to	the	directive;	in	this	case,
example.

The	modifiers	property	is	an	object	containing	any	modifiers	passed	to
the	directive.	In	this	case,	it	will	equal	{ one: true, two: true }.

To	demonstrate	how	to	use	an	argument,	let’s	modify	our	hook	directive	to	take
an	argument	indicating	how	quickly	the	element	should	blink:

Vue.directive('blink', {

 bind(el, binding) {
 let isVisible = true;
 setInterval(() => {
 isVisible = !isVisible;
 el.style.visibility = isVisible ? 'visible' : 'hidden';
 }, binding.value || 1000);
 }
});

I’ve	added	the	binding	argument,	and	changed	the	timing	on	the	setInterval
to	binding.value || 1000	instead	of	just	1000.	This	example	is	lacking	any
logic	to	update	the	component	if	the	argument	changes,	though.	In	order	to	do
that,	we’d	need	to	store	the	ID	returned	by	setInterval	on	a	data	attribute	on
the	object	and	cancel	the	old	interval	before	creating	a	new	one	in	the	update
hook.

Transitions	and	Animations
Vue	contains	a	plethora	of	functionality	that	you	can	use	to	power	animations
and	transitions	in	your	Vue	apps—from	helping	you	with	CSS	transitions	and
JavaScript	animations	when	elements	enter	or	leave	the	page	or	are	modified,	to
transitioning	between	components	and	even	animating	the	data	itself.	There’s	far
too	much	to	cover	in	a	general	book	on	Vue,	so	I’ll	focus	on	the	stuff	I’ve	found
myself	using	most	frequently,	and	you	can	check	out	the	Vue	documentation	on
transitions	(with	some	really	cool	demos!)	yourself	later.

To	start,	let’s	look	at	the	<transition>	component	and	how	to	use	it	with	CSS
transitions	to	animate	elements	in	and	out	of	our	document.

CSS	Transitions
CSS	transitions	are	good	for	simple	animations,	in	which	you’re	just
transitioning	one	or	more	CSS	properties	from	one	value	to	another.	For
example,	you	can	transition	color	from	blue	to	red,	or	opacity	from	1	to	0.
Vue	provides	a	<transition>	component	that	adds	classes	to	a	contained
element	with	a	v-if	directive,	which	you	can	use	to	apply	CSS	transitions	when
an	element	is	added	or	removed.

Throughout	this	section,	we’ll	be	referring	to	the	following	template,	which	has
a	button,	and	an	element	that	toggles	visibility	when	the	button	is	pressed:

<div id="app">
 <button @click="divVisible = !divVisible">Toggle visibility</button>

 <div v-if="divVisible">This content is sometimes hidden</div>
</div>
<script>
 new Vue({
 el: '#app',
 data: {
 divVisible: true
 }
 });
</script>

Currently	if	you	click	the	button,	the	content	in	the	div	element	will	be
immediately	hidden	and	shown	again,	with	no	transition.

Let’s	say	we	want	to	add	a	simple	transition	to	it:	we	want	it	to	fade	in	and	out
when	the	visibility	is	toggled.	To	do	that,	we	can	wrap	the	div	in	a	transition
component,	like	so:

<transition name="fade">
 <div v-if="divVisible">This content is sometimes hidden</div>
</transition>

That	by	itself	won’t	do	anything	(it	will	behave	exactly	the	way	it	did	before	we
added	the	<transition>	element),	but	if	we	add	the	following	CSS,	we’ll	get
our	fade	transition:

.fade-enter-active, .fade-leave-active {
 transition: opacity .5s;
}
.fade-enter, .fade-leave-to {
 opacity: 0;
}

Now,	when	you	click	the	button	to	toggle	visibility,	the	element	fades	in	and	out
of	the	page	instead	of	being	added	or	removed	instantly	as	it	was	before.

The	way	that	this	works	is	that	Vue	takes	the	name	of	the	transition	and	uses	it	to

add	classes	to	the	contained	element	at	various	points	through	the	transition.	Two
types	of	transition,	enter	and	leave,	are	applied	when	the	element	is	added	and
removed	from	the	document,	respectively.	The	classes	are	as	follows:

{name}-enter

This	class	is	applied	to	the	element	as	it	is	added	to	the	DOM,	and
immediately	removed	after	one	frame.	Use	it	to	set	CSS	properties	that	you
want	to	be	removed	as	the	element	transitions	in.

{name}-enter-active

This	class	is	applied	to	the	element	for	the	entirety	of	the	animation.	It’s
added	at	the	same	time	the	-enter	class	is	added,	and	removed	after	the
animation	has	completed.	This	class	is	good	for	setting	the	CSS	transition
property,	containing	the	length	of	the	transition,	the	properties	to	transition,
and	the	easings	to	use.

{name}-enter-to

This	class	is	added	to	the	element	at	the	same	time	as	the	-enter	class	is
removed.	It’s	good	for	setting	CSS	properties	that	are	added	as	the	element
transitions	in,	but	I	generally	find	it’s	better	to	transition	the	inverse	of	the
property	on	the	-enter	class	instead.

{name}-leave

This	class	is	the	equivalent	of	the	-enter	class	for	the	leave	transitions.	It’s
added	when	the	leave	transition	is	triggered	and	then	removed	after	one
frame.	Much	like	the	-enter-to	class,	this	class	isn’t	that	useful;	it’s	better
to	animate	the	inverse	by	using	-leave-to	instead.

{name}-leave-active

This	class	is	the	equivalent	of	-enter-active,	but	for	the	leave	transitions.
It’s	applied	for	the	entire	duration	of	the	exit	transition.

{name}-leave-to

This	class	is	once	again	the	equivalent	of	-enter-to,	but	for	the	leave
transitions.	It’s	applied	one	frame	after	the	transition	starts	(when	-leave	is

removed)	and	remains	until	the	end	of	the	transition.

In	practice,	I	find	myself	using	these	four	classes	the	most:

{name}-enter

This	class	sets	CSS	properties	to	transition	during	the	enter	transition.

{name}-enter-active

This	class	sets	the	transition	CSS	property	for	the	enter	transition.

{name}-leave-active

This	class	sets	the	transition	CSS	property	for	the	leave	transition.

{name}-leave-to

This	class	sets	CSS	properties	to	transition	during	the	leave	transition.

So	the	way	the	previous	code	example	works	is	that	both	the	enter	and	leave
transitions	are	.5s	long,	and	opacity	is	transitioned	(with	the	default	easing),
and	both	on	enter	and	leave	we	are	transitioning	to	and	from	opacity: 0.	We’re
fading	the	element	in	when	it	enters	the	document,	and	fading	it	out	when	it
leaves	again.

JavaScript	Animations
In	addition	to	CSS	animations,	the	<transition>	component	provides	hooks
that	you	can	use	to	power	JavaScript	animations.	Using	these	hooks,	you	can
write	animations	by	using	either	your	own	code	or	a	library	such	as	GreenSock
or	Velocity.

The	hooks	are	similar	to	their	counterparts	for	CSS	transitions:

before-enter

This	hook	is	fired	before	the	enter	animation	starts	and	is	good	for	setting
initial	values.

enter

This	hook	is	fired	when	the	enter	animation	starts	and	is	where	you	can	run
the	animation	from.	You	can	use	a	done	callback	to	indicate	when	the

animation	has	finished.

afterEnter

This	hook	is	fired	when	the	enter	animation	has	ended.

enterCancelled

This	hook	is	fired	when	the	enter	animation	is	cancelled.

beforeLeave

This	hook	is	the	leave	equivalent	of	before-enter,	and	is	fired	before	the
leave	animation	starts.

leave

This	hook	is	the	leave	equivalent	of	enter	and	is	where	you	can	run	the
animation	from.

afterLeave

This	hook	is	fired	when	the	leave	animation	has	ended.

leaveCancelled

This	hook	is	fired	when	the	leave	animation	is	cancelled.

These	hooks	are	triggered	on	the	<transition>	element	as	events,	like	so:

<transition
 v-on:before-enter="handleBeforeEnter"
 v-on:enter="handleEnter"
 v-on:leave="handleLeave>
 <div v-if="divVisible">...</div>
</transition>

With	those	event	handlers	added,	we	can	add	the	same	effect	as	in	the	CSS
transition	example,	but	using	GreenSock	instead,	like	this:

new Vue({
 el: '#app',
 data: {
 divVisible: false
 },

 methods: {
 handleBeforeEnter(el) {
 el.style.opacity = 0;
 },
 handleEnter(el, done) {
 TweenLite.to(el, 0.6, { opacity: 1, onComplete: done });
 },
 handleLeave(el, done) {
 TweenLite.to(el, 0.6, { opacity: 0, onComplete: done });
 }
 }
});

Using	JavaScript	animations,	we	can	create	much	more	complicated	animations
than	we	can	with	CSS	transitions,	including	multiple	steps,	or	a	different
transition	every	time.	CSS	transitions	are	generally	more	performant,	though,	so
stick	with	them	unless	you	need	functionality	you	can’t	get	with	just	CSS
transitions.

Now	that	we’ve	explored	some	of	the	basic	things	that	you	can	do	with	Vue,	let’s
look	at	how	you	can	structure	your	code	by	using	components.

Summary
In	this	chapter	we	looked	at	some	of	the	basics	of	using	Vue:

We	looked	at	some	of	the	reasons	to	use	Vue.

We	looked	at	how	you	can	install	and	set	up	Vue	using	either	a	CDN	or
webpack.

We	looked	at	the	syntax	of	Vue:	how	you	can	use	templates,	the	data
object	and	directives	to	display	your	data	on	the	page.

We	looked	at	the	difference	between	the	v-if	and	v-show	directives.

We	looked	at	how	you	can	use	the	v-for	directive	to	loop	in	templates.

We	looked	at	how	you	can	use	v-bind	to	bind	a	property	of	the	data
object	to	an	HTML	attribute.

We	looked	at	how	Vue	automatically	updates	the	value	displayed	on	the

page	when	the	data	updates:	this	is	called	reactivity.

We	looked	at	two-way	data	binding:	using	v-model	to	both	display	data
in	an	input	and	update	the	data	object	when	the	value	of	the	input	is
changed.

We	looked	at	how	you	can	use	v-html	to	set	the	inner	HTML	of	an
element	from	the	data	object.

We	looked	at	how	you	can	use	methods	to	make	functions	available	to
your	templates	and	throughout	your	Vue	instance.	We	also	looked	at
what	this	means	inside	a	method.

We	looked	at	how	you	can	use	computed	properties	to	create	values	that
you	can	access	as	if	they	are	properties	of	the	data	object,	but	that	are
computed	at	run-time	and	specified	as	functions.

We	looked	at	how	you	can	use	watchers	to	watch	properties	of	the	data
object	or	computed	properties	and	do	something	when	they	change—
but	it’s	generally	a	good	idea	to	avoid	watchers	and	use	computed
properties	instead.

We	looked	at	filters,	a	convinient	way	of	manipulating	data	in	your
templates—useful	for	formatting	data,	for	example.

We	looked	at	how	you	can	access	elements	directly	using	ref,	which	is
useful	if	you’re	using	a	third-party	library	that	doesn’t	work	great	with
Vue,	or	if	you	want	to	do	something	that	Vue	itself	can’t	handle.

We	looked	at	event	binding	using	v-on,	or	the	short	syntax	using	@
followed	by	the	event	name.

We	looked	at	the	life-cycle	of	a	Vue	instance	and	how	you	can	use
hooks	to	execute	code	on	them.

We	looked	at	how	you	can	create	your	own	custom	directives.

We	looked	at	how	Vue	provides	functionality	to	work	with	CSS
transitions	and	JavaScript	animations.

	A	content	delivery	network	(CDN)	is	hosted	on	someone	else’s	servers	all
around	the	world	for	quick	delivery.	A	CDN	is	useful	for	development	and	quick
prototyping,	but	you	should	research	whether	it’s	right	for	you	before	using
unpkg	in	production.

	A	falsy	value	is	a	value	that	is	false,	undefined,	null,	0,	"",	or	NaN.

	Cross-site	scripting	(XSS)	allows	other	people	to	execute	abitrary	code	on	your
website.

1

2

3

Chapter	2.	Components	in	Vue.js

You’ve	seen	me	mention	components	a	couple	of	times	now,	but	what	is	a
component?	A	component	is	a	self-contained	piece	of	code	that	represents	a	part
of	the	page.	Components	have	their	own	data,	their	own	JavaScript,	and	often
their	own	styling.	They	can	contain	other	components,	and	they	can
communicate	with	each	other.	A	component	could	be	something	as	small	as	a
button	or	an	icon,	or	it	could	be	something	bigger,	such	as	a	form	you	reuse	a	lot
throughout	your	site	or	an	entire	page.

The	main	advantage	of	separating	your	code	into	components	is	that	the	code
responsible	for	each	bit	of	the	page	is	close	to	the	rest	of	the	code	for	that
component.	No	more	having	to	search	for	a	selector	in	a	ton	of	JavaScript	files	to
see	what	is	adding	that	event	listener;	the	JavaScript	is	right	there	next	to	the
HTML!	Because	components	are	self-contained,	you	also	can	make	sure	that
none	of	the	code	inside	a	component	will	affect	any	other	components	or	have
any	side	effects.

Component	Basics
Let’s	dive	right	in	and	demonstrate	a	simple	component:

const CustomButton = {
 template: '<button>Custom button</button>'
};

That’s	it.	You	can	then	pass	this	component	into	your	app	by	using	the
components	objects:

<div id="app">
 <custom-button></custom-button>
</div>
<script>
 const CustomButton = {
 template: '<button>Custom button</button>'
 };

 new Vue({
 el: '#app',
 components: {
 CustomButton
 }
 });
</script>

This	outputs	the	custom	button	to	the	page.

You	can	also	register	components	globally	using	the	Vue.component()	method,
as	follows:

Vue.component('custom-button', {
 template: '<button>Custom button</button>'
});

You	can	then	use	the	component	the	same	way	it	was	used	in	the	previous
example	in	the	template,	but	you	don’t	need	to	specify	it	in	the	components
object	anymore;	it’s	available	everywhere.

Data,	Methods,	and	Computed	Properties
Each	component	can	have	its	own	data,	methods,	computed	properties,	and
everything	you’ve	seen	previously—just	like	the	Vue	instance	itself.	The	object
to	define	a	component	is	similar	to	the	object	we	used	to	define	the	Vue	instance,
and	you	can	use	it	the	same	in	a	lot	of	ways.	For	example,	let’s	define	and
globally	register	a	component	with	some	data	and	a	computed	property:

Vue.component('positive-numbers', {
 template: '<p>{{ positiveNumbers.length }} positive numbers</p>',
 data() {
 return {
 numbers: [-5, 0, 2, -1, 1, 0.5]
 };
 },
 computed: {
 positiveNumbers() {
 return this.numbers.filter((number) => number >= 0);
 }
 }

});

We	can	then	use	it	as	<positive-numbers></positive-numbers>	anywhere	in
our	Vue	templates.

You	might	have	noticed	one	subtle	difference	between	a	component	and	the	Vue
instance:	whereas	the	data	property	on	your	Vue	instance	is	an	object,	the	data
property	on	components	is	a	function.	This	is	because	you	can	use	a	component
multiple	times	on	the	same	page,	and	you	probably	don’t	want	them	sharing	a
data	object—imagine	if	you	clicked	a	button,	and	the	button	on	the	other	side	of
the	page	responded	as	well!	For	this	reason,	the	data	property	should	be	a
function	that	Vue	will	call	when	the	component	is	initialized	in	order	to	generate
the	data	object.	If	you	forget	to	make	the	data	property	a	function	on	a
component,	Vue	will	throw	a	warning.

Passing	in	Data
Components	are	useful,	but	they	really	show	their	power	when	you	start	passing
data	into	them.	You	can	pass	data	into	a	component	by	using	props.	Take	the
following	example:

<div id="app">
 <color-preview color="red"></color-preview>
 <color-preview color="blue"></color-preview>
</div>
<script>
 Vue.component('color-preview', {
 template: '<div class="color-preview" :style="style"></div>',
 props: ['color'],
 computed: {
 style() {
 return { backgroundColor: this.color };
 }
 }
 });

 new Vue({
 el: '#app'
 });
</script>

The	props	are	passed	into	the	components	as	attributes	on	the	HTML
(color="red",	for	example);	then	in	the	component,	the	props	property
indicates	the	names	of	the	props	that	can	be	passed	into	the	component—in	this
case,	just	a	color.	Then	in	the	component	we	can	access	the	value	of	the	prop	by
using	this.color.

The	HTML	output	for	the	preceding	code	is	as	follows:

<div id="app">
 <div class="color-preview" style="background-color: red"></div>
 <div class="color-preview" style="background-color: blue"></div>
</div>

Prop	Validation
Instead	of	passing	in	a	simple	array	containing	the	names	of	the	props	your
component	can	receive,	it’s	also	possible	to	pass	an	object	containing
information	about	the	props,	such	as	their	types,	whether	they’re	required,
default	values,	and	custom	validator	functions	for	more	advanced	validation.

To	specify	the	type	of	a	prop,	pass	it	a	native	constructor	such	as	Number,
String,	or	Object,	or	a	custom	constructor	function	that	will	be	checked	with
instanceof.	For	example:

Vue.component('price-display', {
 props: {
 price: Number,
 unit: String
 }
});

If	price	is	anything	other	than	a	number,	or	unit	is	anything	other	than	a	string,
Vue	will	throw	a	warning.

If	a	prop	can	be	one	of	multiple	types,	you	can	pass	in	all	the	valid	types	in	an
array,	such	as	price: [Number, String, Price]	(where	Price	is	a	custom
constructor	function).

You	can	also	specify	whether	a	prop	is	required,	or	give	it	a	default	value	if	one
isn’t	specified.	To	do	that,	specify	an	object	instead	of	a	constructor	as	before,

and	pass	in	the	type	as	the	type	property	of	that	object:

Vue.component('price-display', {
 props: {
 price: {
 type: Number,
 required: true
 },
 unit: {
 type: String,
 default: '$'
 }
 }
});

In	that	example,	price	is	a	required	prop,	and	a	warning	will	be	thrown	if	it	isn’t
specified.	unit	isn’t	required,	but	has	a	default	value	of	$,	so	if	you	don’t	pass	in
any	value,	this.unit	will	equal	$	inside	the	component.

Finally,	you	can	pass	in	a	validator	function	that	will	be	passed	the	value	of	the
prop	and	should	return	true	if	the	prop	is	valid,	or	false	if	it	is	not.	For
example,	the	following	example	validates	whether	the	number	is	above	zero	so
that	you	can’t	accidentally	give	things	negative	prices:

 price: {
 type: Number,
 required: true,
 validator(value) {
 return value >= 0;
 }
 }

Casing	of	Props
Vue	handles	the	casing	of	props	in	a	nice	way:	you	probably	want	to	use	kebab
case	(my-prop="")	only	in	your	HTML,	but	you	probably	don’t	want	to	refer	to
your	props	as	this[my-prop]	in	your	JavaScript.	Camel	case	(this.myProp)	is
much	nicer	to	type	and	read.

Luckily,	Vue	handles	this	for	you.	Props	specified	as	kebab	case	in	your	HTML
are	automatically	converted	to	camel	case	in	your	component:

<div id="app">
 <price-display percentage-discount="20%"></price-display>
</div>
<script>
 Vue.component('price-display', {
 props: {
 percentageDiscount: Number
 }
 });

 new Vue({
 el: '#app'
 });
</script>

That	works	as	expected	without	having	to	do	any	work	ourselves.

Reactivity
You’ve	seen	that	when	the	value	of	the	data	object,	method,	or	computed
property	changes,	the	template	is	updated	too,	and	this	also	works	for	props.	v-
bind	can	be	used	when	setting	the	prop	on	the	parent	to	bind	it	to	a	value,	and
then	whenever	that	value	changes,	anywhere	it	is	used	in	the	component	is	also
updated.

For	a	simple	example	of	this,	let’s	make	a	component	that	displays	a	number
given	to	it	as	a	prop:

Vue.component('display-number', {
 template: '<p>The number is {{ number }}</p>',
 props: {
 number: {
 type: Number,
 required: true
 }
 }
});

Then	let’s	display	this	on	the	page	with	a	value	that	increases	by	one	every
second:

<div id="app">
 <display-number v-bind:number="number"></display-number>
</div>

<script>
 new Vue({
 el: '#app',
 data: {
 number: 0
 },
 created() {
 setInterval(() => {
 this.number++;
 }, 1000);
 }
 });
</script>

The	number	passed	to	the	display-number	component	is	increasing	by	one
every	second	(remember,	the	created	function	runs	when	the	instance	is
created),	and	so	the	prop	is	changing	once	a	second.	Vue	is	clever	enough	to
know	this,	and	so	it	updates	the	page.

NOTE
Using	v-bind	is	required	when	passing	in	anything	other	than	strings.	The	following	will
throw	a	warning:

<display-number number="10"></display-number>

This	is	because	the	value	is	being	passed	in	as	a	string,	not	a	number.	To	pass	the	number	in,
add	v-bind	to	evaluate	it	as	an	expression	before	it	is	passed	in:

<display-number v-bind:number="10"></display-number>

Data	Flow	and	the	.sync	Modifier
Data	is	passed	to	a	child	from	a	parent	via	a	prop,	and	when	that	data	is	updated
in	the	parent,	the	prop	passed	to	the	child	is	updated.	However,	you	cannot
modify	the	prop	from	the	child	component.	This	is	known	as	a	one-way-down
binding,	and	prevents	components	from	perhaps	unintentionally	mutating	a
parent’s	state.

However,	two-way	data	binding	can	be	useful	in	some	cases.	If	you	want	to	use
two-way	data	binding,	you	can	use	a	modifier	to	achieve	it:	the	.sync	modifier.
It’s	just	syntactical	sugar.	Take	the	following	code:

<count-from-number
 :number.sync="numberToDisplay"
 />

This	code	is	the	equivalent	of	the	following:

<count-from-number
 :number="numberToDisplay"
 @update:number="val => numberToDisplay = val"
 />

So,	in	order	to	change	the	value	in	the	parent	component,	you	need	to	emit	the
update:number	event,	where	the	argument—in	this	case,	number—is	the	name
of	the	value	to	be	updated.

Let’s	look	at	how	we	can	make	a	CountFromNumber	component	that	takes	an
initial	value	and	then	counts	up	from	it,	also	updating	the	parent	value:

Vue.component('count-from-number', {
 template: '<p>The number is {{ number }}</p>',
 props: {
 number: {
 type: Number,
 required: true
 }
 },
 mounted() {
 setInterval(() => {
 this.$emit('update:number', this.number + 1);
 }, 1000);
 }
});

The	local	value	isn’t	being	changed	at	all,	but	the	component	is	changing	the
parent	value	that	is	being	passed	back	down	to	the	component.

In	some	cases,	it	might	be	beneficial	to	wrap	the	emit	logic	in	a	computed
property,	like	so:

Vue.component('count-from-number', {
 template: '<p>The number is {{ localNumber }}</p>',
 props: {
 number: {
 type: Number,
 required: true
 }
 },
 computed: {

 localNumber: {
 get() {
 return this.number;
 },
 set(value) {
 this.$emit('update:number', value);
 }
 }
 },
 mounted() {
 setInterval(() => {
 this.localNumber++;
 }, 1000);
 }
});

Now,	localNumber	is	effectively	the	same	as	number.	It	gets	the	value	from	the
prop,	and	when	it	is	updated,	it	emits	the	event	to	update	the	value	in	the	parent
component	(where	it	will	then	be	passed	back	down	again	as	the	updated	value).

WARNING
Be	careful	of	infinite	loops	when	you’re	doing	this:	if	both	the	parent	and	child	components	are
reacting	to	changes	and	changing	the	value	again,	it	will	break	your	app!

If	you	just	want	to	update	the	value	passed	in	as	a	prop	and	don’t	care	about
updating	the	value	on	the	parent	component,	you	can	copy	the	value	from	the
prop	into	the	data	object	by	referring	to	this	in	the	initial	data	function,	like	so:

Vue.component('count-from-number', {
 template: '<p>The number is {{ number }}</p>',
 props: {
 initialNumber: {
 type: Number,
 required: true
 }
 },
 data() {
 return {
 number: this.initialNumber
 };
 },
 mounted() {

 setInterval(() => {
 this.number++;
 }, 1000);
 }
}),

Note	that	if	you	do	this,	the	component	won’t	update	when	the	prop	value
updates,	because	it	will	be	referring	to	a	different	value.	If	you	want	to	restart	the
counter	from	the	new	number	provided,	add	a	watcher	for	initialNumber	that
will	copy	the	new	value	across	to	number.

Custom	Inputs	and	v-model
Similarly	to	the	.sync	operator,	it’s	possible	to	use	v-model	on	your
components	in	order	to	create	custom	inputs.	Once	again,	it’s	syntactical	sugar.
Look	at	the	following	code:

<input-username
 v-model="username"
 />

That	code	is	the	equivalent	of	this:

<input-username
 :value="username"
 @input="value => username = value"
 />

So,	to	create	our	InputUsername	component,	we	need	it	to	do	two	things:	first,
it	needs	to	read	the	initial	value	from	the	value	prop,	and	then	it	needs	to	emit
an	input	event	whenever	the	value	is	changed.	For	the	sake	of	this	example,
let’s	also	make	the	component	lowercase	the	values	before	it	emits	them.

We	can’t	use	either	of	the	approaches	(emitting	the	event	in	order	to	change	the
value	or	using	a	computed	property)	that	worked	in	the	previous	section.	Instead,
we	have	to	listen	to	the	input	event	on	the	input:

Vue.component('input-username', {
 template: `<input type="text" :value="value" @input="handleInput">`,
 props: {

 value: {
 type: String,
 required: true
 }
 },
 methods: {
 handleInput(e) {
 const value = e.target.value.toLowerCase();

 // If value was changed, update it on the input too
 if (value !== e.target.value) {
 e.target.value = value;
 }

 this.$emit('input', value);
 }
 }
});

Now	you	can	use	this	component	just	as	you	would	an	input	element:	using	v-
model	will	behave	the	same.	The	only	difference	is	that	you	can’t	use	capital
letters!

TIP
The	preceding	example	has	a	problem:	if	you	type	an	uppercase	letter,	the	cursor	will	be
moved	to	the	end	of	the	string.	This	is	fine	when	someone	is	entering	a	username	for	the	first
time,	but	if	they’re	going	back	to	change	it,	their	cursor	will	seem	to	jump	about.

It’s	an	easy	enough	problem	to	solve,	but	beyond	the	scope	of	the	previous	example;	before
setting	e.target.value,	store	the	current	cursor	position,	and	set	it	again	after	you’ve	made
the	change.

Passing	Content	into	Components	with	Slots
In	addition	to	passing	data	into	components	as	props,	Vue	lets	you	pass	HTML
into	them	too.	For	example,	let’s	say	you	want	to	create	a	custom	button
element.	You	could	use	an	attribute	to	set	the	text:

<custom-button text="Press me!"></custom-button>

That	would	work,	but	it’s	much	more	natural	like	this:

<custom-button>Press me!</custom-button>

To	use	this	content	inside	the	component,	you	can	use	the	<slot>	tag	as	follows:

Vue.component('custom-button', {
 template: '<button class="custom-button"><slot></slot></button>'
});

Then,	the	following	HTML	will	be	generated:

<button class="custom-button">Press me!</button>

In	addition	to	passing	in	strings,	you	can	pass	in	any	HTML	you	like;	you	can
even	pass	in	other	Vue	components.	This	allows	you	to	create	complicated
documents	without	any	of	your	components	getting	too	big.	For	example,	you
could	divide	your	page	into	a	header	component,	a	sidebar	component,	and	a
content	component	and	write	your	template	something	like	this:

<div class="app">
 <site-header></site-header>

 <div class="container">
 <site-sidebar>
 ...sidebar content goes here...
 </site-sidebar>

 <site-main>
 ...main content goes here...
 </site-main>
 </div>
</div>

This	is	a	nice	way	of	structuring	sites,	especially	after	you	start	using	scoped
CSS	and	vue-router,	which	are	introduced	later	in	the	book.

Fallback	Content
If	you	specify	content	inside	the	<slot>	element,	it	will	be	used	as	fallback
content	when	content	isn’t	passed	to	the	component.	Let’s	give	our	<custom-
button>	component	seen	previously	some	default	text	as	a	fallback	component:

Vue.component('custom-button', {
 template: `<button class="custom-button">
 <slot>Default button text</slot>
 </button>`
});

Writing	HTML	inside	the	template	string	is	getting	unwieldy,	so	let’s	see	that
example	again,	but	in	an	HTML	block:

<button class="custom-button">
 <slot>
 Default button text
 </slot>
</button>

You	can	see	that	in	addition	to	having	default	text,	the	text	is	also	wrapped	in	a
span	element	with	the	default-text	class.	This	is	completely	optional—you
don’t	have	to	have	a	tag	surrounding	the	content	in	a	slot	component	or	in	the
fallback	content;	you	can	use	any	HTML	you	want.

I	cover	how	to	separate	your	HTML	from	the	component	object	in	“vue-loader
and	.vue	Files”.	Using	the	template	attribute	works	in	only	very	simple
examples.

Named	Slots
In	the	previous	section,	you	saw	single	slots.	They’re	probably	the	most
commonly	used	kind	of	slots	and	are	certainly	the	simplest	to	understand:
content	passed	to	the	component	is	output	as	the	<slot>	component	inside	the
element.

There	are	also	named	slots.	Named	slots	have—you	guessed	it—a	name,	which
allows	you	to	have	multiple	slots	in	the	same	component.

Let’s	say	we	have	a	simple	blog	post	component	with	a	header	(usually	a	title,
but	maybe	sometimes	other	things)	and	some	text.	The	component	could	have
the	following	template:

<section class="blog-post">
 <header>
 <slot name="header"></slot>

 <p>Post by {{ author.name }}</p>
 </header>

 <main>
 <slot></slot>
 </main>
</section>

Then	when	we	call	the	component	in	our	template,	we	can	use	the	slot	attribute
to	say	that	a	given	element	should	be	used	as	the	header	slot.	The	rest	of	the
HTML	will	be	used	as	the	unnamed	slot:

<blog-post :author="author">
 <h2 slot="header">Blog post title</h2>

 <p>Blog post content</p>

 <p>More blog post content</p>
</blog-post>

The	generated	HTML	looks	like	the	following:

<section class="blog-post">
 <header>
 <h2>Blog post title</h2>
 <p>Post by Callum Macrae</p>
 </header>

 <main>
 <p>Blog post content</p>

 <p>More blog post content</p>
 </main>
</section>

Scoped	Slots
It’s	possible	to	pass	data	back	into	our	slot	components	so	that	we	can	access
component	data	in	the	parent	component’s	markup.

Let’s	make	a	component	that	gets	user	information,	but	leaves	the	display	of	it	to
the	parent	element:

Vue.component('user-data', {

 template: '<div class="user"><slot :user="user"></slot></div>',
 data: () => ({
 user: undefined,
 }),
 mounted() {
 // Set this.user...
 }
});

Any	properties	passed	to	<slot>	will	be	available	on	a	variable	defined	in	the
slot-scope	property.	Let’s	call	this	component	and	display	the	user	information
with	our	own	HTML:

<div>
 <user-data slot-scope="user">
 <p v-if="user">User name: {{ user.name }}</p>
 </user-data>
</div>

This	functionality	combined	with	named	slots	can	be	useful	for	overriding	the
styling	of	an	element.	Let’s	take	a	component	that	displays	a	list	of	blog	post
summaries:

<div>
 <div v-for="post in posts">
 <h1>{{ post.title }}</h1>
 <p>{{ post.summary }}</p>
 </div>
</div>

Pretty	simple.	It	takes	an	array	of	posts	as	posts,	and	then	outputs	all	the	post
titles	and	summaries.	To	use	it,	we	can	do	this:

<blog-listing :posts="posts"></blog-listing>

Let’s	create	a	version	of	this	in	which	we	can	pass	in	our	own	HTML	to	display
the	post	summary—maybe,	for	example,	on	one	page	we	want	to	display	images
instead.	We	need	to	wrap	the	paragraph	element	for	the	summary	in	a	named	slot
element,	which	we	can	then	override	if	we	choose	to.

Our	new	component	looks	like	this:

<div>
 <div v-for="post in posts">
 <h1>{{ post.title }}</h1>

 <slot name="summary" :post="post">
 <p>{{ post.summary }}</p>
 </slot>
 </div>
</div>

Now,	the	original	way	we	used	the	component	still	works	fine,	because	the
paragraph	element	is	still	available	as	a	fallback	if	no	slot	element	is	provided,
but	if	we	choose	to,	we	can	override	the	post	summary	element.

Let’s	override	the	summary	to	display	an	image	instead	of	the	post	summary:

<blog-listing :posts="posts">
 <img
 slot="summary"
 slot-scope="post"
 :src="post.image"
 :alt="post.summary">
</blog-listing>

Now	the	image	element	is	used	instead	of	the	text	element.	We	provided	the	post
summary	as	the	alternate	text	for	the	image,	though;	this	is	important	so	that
users	using	assistive	technology	such	as	screen	readers	still	know	what	the	blog
post	is	about.

Slot	scope	destructuring

As	a	neat	shortcut,	you	can	treat	the	slot-scope	argument	as	if	it	were	a
function	argument,	so	you	can	use	destructuring.

Let’s	rewrite	the	previous	example	to	use	destructuring:

<blog-listing :posts="posts">
 <img
 slot="summary"
 slot-scope="{ image, summary }"
 :src="image"
 :alt="summary">
</blog-listing>

Custom	Events
In	addition	to	working	with	native	DOM	events,	v-on	works	with	custom	events
that	you	can	emit	from	your	components.	To	fire	a	custom	event,	use	the
this.$emit()	method	with	the	name	of	the	event	and	any	arguments	you	want
to	pass.	Then	you	can	use	v-on	on	the	component	to	listen	to	the	event.

The	following	is	a	simple	component	that	emits	an	event	called	count	every
time	it	is	clicked:

<div id="app">
 <button @click="handleClick">Clicked {{ clicks }} times</button>
</div>

<script>
 new Vue({
 el: '#app',
 data: () => ({
 clicks: 0
 }),
 methods: {
 handleClick() {
 this.clicks++;
 this.$emit('count', this.clicks);
 }
 }
 });
</script>

Every	time	the	button	is	clicked,	it	fires	the	count	event,	and	as	an	argument,	the
number	of	times	the	button	has	been	clicked.

Then	when	we	use	the	component,	we	can	use	v-on	with	the	custom	event	just
as	we	used	v-on	before	with	the	click	event	to	listen	to	the	event.	The	following
example	takes	the	number	that	the	counter	emits	and	displays	it	to	the	page:

<div id="app">
 <counter v-on:count="handleCount"></counter>

 <p>clicks = {{ clicks }}</p>
</div>
<script>
 const Counter = {
 // component here

 };

 new Vue({
 el: '#app',
 data: {
 clicks: 0,
 },
 methods: {
 handleCount(clicks) {
 this.clicks = clicks;
 }
 },
 components: {
 Counter
 }
 });
</script>

When	working	inside	a	component,	we	can	also	listen	to	events	that	are	being
dispatched	by	that	same	component	by	using	the	$on	method.	It	works	pretty
much	the	same	as	any	event	dispatcher:	when	you	fire	an	event	by	using	$emit,
your	event	handler	that	was	added	using	$on	is	triggered.	You	can’t	use
this.$on	to	listen	to	events	fired	by	child	components;	either	use	v-on	on	the
component	or	use	a	ref	on	the	component	to	call	.$on	on	the	component	itself:

<div id="app">
 <counter ref="counter"></counter>
</div>
<script>
 // Incomplete component for brevity
 new Vue({
 el: '#app',
 mounted() {
 this.$refs.counter.$on('count', this.handleCount);
 }
 });
</script>

There	are	also	two	more	methods	for	working	with	events:	$once	and	$off.
$once	behaves	the	same	as	$on,	but	is	fired	only	once—the	first	time	the	event	is
fired—and	$off	is	used	to	remove	an	event	listener.	Both	methods	behave
similarly	to	your	standard	event	emitters	such	as	EventEmitter	in	Node.js	and
the	.on(),	.once(),	.off(),	and	.trigger()	methods	in	jQuery.

Because	Vue	has	a	full	event	emitter	built	in,	when	you’re	using	Vue,	there	is	no
need	to	import	your	own	event	emitter.	Even	when	you’re	writing	code	as	part	of
a	Vue	component,	you	can	still	take	advantage	of	the	Vue	event	emitter	by
creating	a	new	instance	using	new Vue().	See	the	following	example:

const events = new Vue();

let count = 0;
function logCount() {
 count++;
 console.log(`Debugger function called ${count} times`);
}

events.$on('test-event', logCount);

setInterval(() => {
 events.$emit('test-event');
}, 1000);

setTimeout(() => {
 events.$off('test-event');
}, 10000);

This	code	logs	to	the	console	once	a	second	for	10	seconds	until	the	event
handler	is	removed	by	.$off().

This	is	especially	useful	for	getting	your	Vue	code	to	communicate	with	your
non-Vue	code—although	it’s	generally	better	to	use	vuex	instead	if	it’s	available.

Mixins
Mixins	are	a	way	of	storing	code	to	be	reused	across	multiple	elements.	For
example,	let’s	say	you	have	numerous	components	for	displaying	different	types
of	users.	Although	most	of	what	you	want	to	display	will	depend	on	the	type	of
user,	a	fair	chunk	of	the	logic	will	be	common	between	the	components.	You	can
take	three	approaches	here:	you	can	have	duplicate	code	across	all	the
components	(obviously	not	a	good	idea);	you	can	take	the	common	code,	split	it
into	functions,	and	store	it	in	a	util	file;	or	you	can	use	a	mixin.	The	last	two
approaches	are	fairly	similar	in	this	example,	but	using	a	mixin	is	the	more	Vue
way	to	do	it—and	in	a	lot	of	other	examples	that	we’ll	be	covering	in	this

section,	can	be	a	lot	more	powerful.

Anything	stored	on	the	mixin	will	also	be	available	on	the	component	that	the
mixin	is	added	to.	Let’s	create	a	mixin	that	adds	a	method	called
getUserInformation()	to	the	components	it	is	added	to:

const userMixin = {
 methods: {
 getUserInformation(userId) {
 return fetch(`/api/user/${userId}`)
 .then((res) => res.json);
 }
 }
};

Now	you	can	add	it	in	a	component	and	use	it	like	this:

import userMixin from './mixins/user';

Vue.component('user-admin', {
 mixins: [userMixin],
 template: '<div v-if="user">Name: {{ user.name }}</div>',
 props: {
 userId: {
 type: Number
 }
 }
 data: () => ({
 user: undefined
 }),
 mounted() {
 this.getUserInformation(this.userId)
 .then((user) => {
 this.user = user;
 });
 }
});

Vue	will	automatically	have	added	the	method	to	the	component—it	has	been
“mixed”	in.

In	addition	to	methods,	mixins	are	able	to	access	pretty	much	anything	the	Vue
component	can,	as	if	it	were	part	of	the	component	itself.	For	example,	let’s
change	the	mixin	so	that	it	is	responsible	for	the	storage	of	the	data	and	the

mounted	hook:

const userMixin = {
 data: () => ({
 user: undefined
 }),
 mounted() {
 fetch(`/api/user/${this.userId}`)
 .then((res) => res.json())
 .then((user) => {
 this.user = user;
 });
 }
}

Now	the	component	can	be	simplified	to	this:

import userMixin from ./mixins/user';

Vue.component('user-admin', {
 mixins: [userMixin],
 template: '<div v-if="user">Name: {{ name.user }}</div>',
 props: {
 userId: {
 type: Number
 }
 }
});

Although	the	component	has	been	made	a	lot	simpler,	knowing	where	the	data	is
coming	from	could	become	confusing.	You	need	to	consider	this	trade-off	when
deciding	what	to	put	in	your	mixins	and	what	to	put	in	your	components.

Merging	Mixins	and	Components
If	a	mixin	and	a	component	have	duplicate	keys—for	example,	if	they	both	have
a	method	called	addUser()	or	they	both	use	the	created()	hook—Vue	handles
them	differently,	depending	on	what	they	are.

For	life-cycle	hooks—for	example,	created()	or	beforeMount()—Vue	adds
them	to	an	array	and	runs	both	of	them:

const loggingMixin = {

 created() {
 console.log('Logged from mixin');
 }
};

Vue.component('example-component', {
 mixins: [loggingMixin],
 created() {
 console.log('Logged from component');
 }
});

When	that	component	is	created,	both	“Logged	from	mixin”	and	“Logged	from
component”	will	be	logged	to	the	console.

For	duplicate	methods,	computed	properties,	or	anything	else	that	isn’t	a	life-
cycle	hook,	the	property	from	the	component	will	override	the	property	from	the
mixin.

For	example:

const loggingMixin2 = {
 methods: {
 log() {
 console.log('Logged from mixin');
 }
 }
};

Vue.component('example-component' {
 mixins: [loggingMixin2],
 created() {
 this.log();
 },
 methods: {
 log() {
 console.log('Logged from component');
 }
 }
};

Now	when	the	console	is	created,	only	“Logged	from	component”	is	logged,	as
the	log()	method	from	the	component	has	overridden	the	log()	method	from
the	mixin.

Sometimes	this	behavior	might	be	intentional,	but	sometimes	you	might	have

accidentally	named	two	methods	in	different	places	the	same	thing,	which	could
lead	to	issues	if	one	of	them	is	overridden!	For	this	reason,	the	official	Vue	Style
Guide	recommends	that	for	private	properties	in	mixins	(methods,	data,	and
computed	properties	that	aren’t	supposed	to	be	used	outside	the	mixin),	you
should	prefix	their	names	with	$yourMixinName.	The	log()	method	in	the
previous	mixin	would	become	$_loggingMixin2_log().	This	is	especially
important	when	writing	plug-ins,	as	users	will	be	adding	your	plug-in	to	their
own	code.

vue-loader	and	.vue	Files
In	“Installation	and	Setup”,	I	discussed	how	to	install	Vue,	and	briefly	covered
how	to	set	up	vue-loader.	Writing	components	by	using	Vue.component()	or
storing	them	as	objects	can	be	a	bit	messy,	and	with	more	complicated
components,	you	don’t	really	want	to	be	writing	a	ton	of	HTML	in	the	template
property	of	the	component.	vue-loader	adds	a	way	to	write	one	component	per
file	in	a	logical	and	easy-to-understand	syntax	in	.vue	files.

If	you’ve	set	up	vue-loader,	you	can	take	this	component	you	saw	previously:

Vue.component('display-number', {
 template: '<p>The number is {{ number }}</p>',
 props: {
 number: {
 type: Number,
 required: true
 }
 }
});

And	turn	it	into	this:

<template>
 <p>The number is {{ number }}</p>
</template>

<script>
 export default {
 props: {
 number: {
 type: Number,

 required: true
 }
 }
 };
</script>

If	you	save	that	as	display-number.vue,	you	can	then	import	it	into	your
application	and	use	it	as	if	you	had	defined	it	by	using	the	object	syntax:

<div id="app">
 <display-number :number="4"></display-number>
</div>
<script>
 import DisplayNumber from './components/display-number.vue';

 new Vue({
 el: '#app',
 components: {
 DisplayNumber
 }
 });
</script>

After	being	processed	by	webpack	and	vue-loader,	that	code	will	work	just	like
the	previous	example	with	the	display-number	component.	It	won’t	work	at	all
in	the	browser;	you	need	to	use	a	preprocessor	for	this.

Splitting	your	components	into	files	makes	your	code	a	lot	easier	to	manage.
Instead	of	having	one	large	file	with	all	your	components,	you	can	store	them	in
files	in	relevantly	named	directories—perhaps	named	by	the	section	of	the	site
they’re	used	on,	or	by	the	type	or	size	of	the	component.

Non-prop	Attributes
If	you	specify	an	attribute	on	a	component	that	isn’t	used	a	prop,	it’s	added	to	the
root	HTML	element	of	the	component.	For	instance,	let’s	say	we	want	to	add	a
class	to	the	<display-number>	component	in	the	previous	example.	You	can
add	it	to	the	location	where	you	call	the	component:

<display-number class="some-class" :number="4"></display-number>

The	following	is	the	output:

<p class="some-class">The number is 4</p>

This	works	with	any	HTML	property	or	attribute,	not	just	class.

What	happens	if	we	specify	the	same	attribute	on	both	the	component	and	root
element	of	the	component?	Most	of	the	time,	if	we	specify	the	same	attribute	in
both	places,	the	attribute	on	the	component	will	overwrite	the	attribute	specified
in	the	component	template.	For	example,	let’s	take	the	following	code	example:

<div id="app">
 <custom-button type="submit">Click me!</custom-button>
</div>
<script>
 const CustomButton = {
 template: '<button type="button"><slot></slot></button>'
 };

 new Vue({
 el: '#app',
 components: {
 CustomButton
 }
 });
</script>

In	our	component	template,	we’re	giving	the	button	type="button",	but	then
when	we	call	the	component,	we’re	specifying	type="submit".	The	attribute
specified	on	the	component,	not	inside	the	component,	would	override	the	other
one,	and	the	following	would	be	output:

<button type="submit">Click me!</button>

Most	attributes	will	overwrite	the	attribute	inside	the	template,	but	class	and
style	are	slightly	smarter,	and	their	values	will	be	merged.	Let’s	take	the
following	example:

<div id="app">
 <custom-button
 class="margin-top"
 style="font-weight: bold; background-color: red">

 Click me!
 </custom-button>
</div>
<script>
 const CustomButton = {
 template: `
 <button
 class="custom-button"
 style="color: yellow; background-color: blue">
 <slot></slot>
 </button>`
 };

 new Vue({
 el: '#app',
 components: {
 CustomButton
 }
 });
</script>

The	classes	will	be	merged	together	to	give	custom-button margin-top,	and
the	style	attributes	will	be	merged	together	to	become	color: yellow;
background-color: red; font-weight: bold;.	Note	that	the	background-
color	from	the	component	attribute	has	overridden	the	background-color	from
the	component’s	template.

Components	and	v-for
When	using	v-for	to	loop	through	an	array	or	object,	and	the	array	or	object
given	to	the	directive	changes,	Vue	doesn’t	regenerate	every	element	again;	it
intelligently	works	out	which	elements	need	to	change	and	changes	only	those
ones.	For	example,	if	you	have	an	array	that	is	being	output	to	the	page	as	list
elements	and	you	add	another	item	to	the	end	of	the	list,	the	existing	elements
will	be	left	alone,	and	a	new	element	will	be	created	at	the	end.	If	an	item	in	the
middle	of	the	array	is	changed,	only	the	corresponding	element	is	changed.

If,	however,	you	remove	or	add	an	item	in	the	middle	of	the	list,	Vue	won’t
calculate	which	is	the	corresponding	element	for	the	item	removed;	it	will	update
every	single	element	from	that	point	to	the	end	of	the	list,	where	it	will	add	or
remove	a	new	element.	With	simple	content,	this	probably	isn’t	an	issue,	but

with	more	complicated	content	and	with	components,	you’ll	want	to	stop	Vue
from	doing	that.

Vue	allows	you	to	specify	a	key	when	using	v-for	so	that	you	can	tell	Vue
which	element	should	be	associated	with	each	item	of	the	array	and	the	correct
element	is	deleted.	By	default,	the	key	is	the	index	of	the	element	within	the
loop.	You	can	see	how	this	behavior	works	by	using	the	following	code:

<template>
 <demo-key v-for="(item, i) in items" @click.native="items.splice(i, 1)">
 {{ item }}
 </demo-key>
</template>

<script>
 const randomColor = () => `hsl(${Math.floor(Math.random() * 360)}, 75%, 85%)`;

 const DemoKey = {
 template: `<p :style="{ backgroundColor: color }"><slot></slot></p>`,
 data: () => ({
 color: randomColor()
 })
 };

 export default {
 data: () => ({
 items: ['one', 'two', 'three', 'four', 'five']
 }),
 components: {
 DemoKey
 }
 };
</script>

NOTE
The	click	handler	is	added	using	the	.native	modifier,	because	that’s	how	you	can	add	event
listeners	for	native	DOM	events	to	components.	Without	.native,	the	event	handler	wouldn’t
be	called.

That	outputs	five	randomly	colored	paragraph	elements	containing	the	numbers
one	through	five,	as	follows:

Clicking	one	of	the	paragraphs	removes	the	corresponding	item	from	the	items
array.	If	we	click	the	second	element—in	the	image,	the	element	labeled	two—
you’d	expect	that	that	element	would	be	completely	removed,	and	the	element
containing	three	would	become	the	second	element.	Not	so!	What	you	end	up
with	is	the	following:

This	is	because	of	the	way	Vue’s	diffing	mechanism	works:	you	removed	the
second	item,	so	it	updates	the	text	of	that	element	to	reflect	the	change,	and	then
the	next	element,	and	then	the	next	element,	and	then	the	array	has	ended,	so	it
removes	the	final	element.	That	probably	wasn’t	what	you	desired	in	this	case,
though,	so	let’s	add	a	key	to	the	example	so	that	Vue	knows	which	element	to
delete:

<template>
 <demo-key
 v-for="(item, i) in items" :key="item"
 @click.native="items.splice(i, 1)">
 {{ item }}
 </demo-key>
</template>

The	key	should	be	a	unique	number	or	string	that	corresponds	to	the	item	in	the
array.	In	this	case,	the	array	items	themselves	are	just	strings,	so	we	can	use	them
as	the	keys.

WARNING
I’ve	fairly	frequently	seen	people	specify	the	key	to	be	the	index	of	the	array	(for	instance,
:key="i"	in	the	previous	example).	Except	in	some	specific	cases,	you	probably	don’t	want	to
do	that!	Although	it	will	stop	the	warnings,	you’ll	run	into	exactly	the	same	issue	I	just	showed
you,	with	a	different	element	from	what	you’d	expect	being	deleted.

Now,	clicking	the	second	element	will	remove	two	from	the	array,	and	the
corresponding	element,	resulting	in	the	following:

In	general,	specify	a	key	wherever	you	can.	It’s	not	optional	when	using	v-for
directly	on	a	component,	as	you	saw	in	the	previous	example.	Vue	will	have
logged	warnings	to	the	console	in	that	example.

Summary
Components	are	great	for	separating	your	code	into	logical	chunks,	each	of
which	can	perform	a	specific	task.	In	this	chapter	you	learned	how	to	create	and
use	components,	both	globally	with	Vue.component()	and	locally	using	the
components	property	and	objects.

You	also	saw	how	to	pass	data	into	components	by	using	props,	how	to	validate
those	props,	and	how	data	flows	down	but	not	up	unless	you	use	.sync,	or	for
inputs,	custom	update	events.

I	showed	you	how	to	use	slots	to	pass	other	HTML	and	components	into
components,	easily	enabling	you	to	make	layout	components	and	fallback
content.

You	looked	at	custom	events,	which	you	can	use	to	send	information	from	a
component	to	its	parent.

You	also	learned	to	use	mixins	to	move	common	logic	out	of	components	and
share	it	between	multiple	components.

You	looked	at	vue-loader	and	how	you	can	use	it	when	using	webpack	to	create
single-file	components—a	file	that	contains	a	component	and	nicely	separates
the	HTML,	JavaScript,	and	styling	logic.

Finally,	you	also	learned	what	happens	if	you	specify	an	attribute	on	a
component	that	isn’t	used	as	a	prop,	and	why	you	should	use	:key	when	using
v-for	on	a	component.

Chapter	3.	Styling	with	Vue

Vue	helps	you	style	your	website	or	application	in	a	few	ways.	v-bind:class
and	v-bind:style	both	have	special	helpers	to	help	you	set	the	class	attribute
and	inline	styles	from	your	data,	and	when	you’re	using	components	with	vue-
loader,	it’s	possible	to	write	scoped	CSS	that	will	affect	only	the	component	that
CSS	is	writing	in.

Class	Binding
It’s	common	to	use	v-bind	with	the	class	attribute	in	order	to	add	or	remove
classes	depending	on	your	data.	Vue	adds	a	couple	of	neat	enhancements	when
using	v-bind	to	set	the	class	attribute,	making	it	a	lot	nicer	to	work	with.

NOTE
If	you’ve	used	the	classNames	utility	in	React,	you’ll	be	fairly	familiar	with	the	v-bind
syntax.	It’s	basically	the	same,	except	wrapped	in	an	array	instead	of	being	arguments	of	a
function.

If	you	pass	an	array	to	v-bind:class,	the	classes	in	the	array	will	be	joined
together.	This	is	great	for	times	when	you	want	to	set	classes	from	your	data	or
computed	properties.	Take	the	following	example:

<div id="app">
 <div v-bind:class="[firstClass, secondClass]">
 ...
 </div>
</div>
<script>
 new Vue({
 el: '#app',
 data: {
 firstClass: 'foo'
 },

 computed: {
 secondClass() {
 return 'bar';
 }
 }
 });
</script>

In	this	example,	firstClass	equals	foo	and	secondClass	evaluates	to	bar,	so
the	div	element	would	be	given	a	class	attribute	of	foo bar.

In	addition	to	using	arrays,	you	can	use	objects.	An	object	will	conditionally	add
the	keys	as	classes	depending	on	the	values:	if	the	value	is	truthy,	the	key	will	be
added	as	a	class;	otherwise,	if	it	is	false,	it	will	not.

For	example,	if	the	bound	class	is	{ my-class: shouldAddClass },	the
element	will	have	the	my-class	element	if	shouldAddClass	evaluates	to	a
truthy	value.	You	can	also	specify	more	than	one	class	in	the	object.	Take	the
following	example:

<div id="app">
 <div v-bind:class="classes"></div>
</div>
<script>
 new Vue({
 el: '#app',
 data: {
 shouldBeBar: true
 },
 computed: {
 classes() {
 return {
 foo: true,
 bar: this.shouldBeBar,
 hello: false
 };
 }
 }
 });
</script>

Once	again	in	this	example,	the	generated	class	attribute	will	be	foo bar:	foo	is
set	to	true;	bar	is	set	to	this.shouldBeBar,	which	evaluated	to	true;	and
hello	is	set	to	false,	so	isn’t	applied	to	the	element.

Although	I’ve	returned	the	object	from	a	computed	property,	this	is	entirely
optional,	and	you	can	specify	the	object	inline.	It’s	just	a	nice	pattern	to	avoid
the	line	getting	too	long	when	you	have	more	than	a	couple	of	classes.

It’s	also	possible	to	mix	both	arrays	and	objects	by	using	the	objects	inside	an
array	when	you	want	to	add	classes	from	both	variables	and	conditionally	add
classes:

<div v-bind:class="[
 'my-class',
 classFromVariable,
 { 'conditional-class': hasClass }
]"></div>

You	can,	of	course,	specify	the	classes	as	a	normal	string	or	from	a	variable
containing	the	class	name	if	you	don’t	need	any	of	the	functionality	from	using
arrays	or	objects.

Inline	Style	Binding
Similar	to	v-bind:class,	covered	in	the	previous	section,	Vue	also	has	a	special
helper	for	the	style	attribute.	Instead	of	you	having	to	concatenate	strings	to
specify	inline	styles,	you	can	specify	them	as	an	object	instead:

<div v-bind:style="{ fontWeight: 'bold', color: 'red' }"></div>

Note	that	we’re	writing	fontWeight,	not	'font-weight'.	Vue	automatically
converts	the	object’s	properties	from	camel	case	to	their	equivalent	CSS
properties,	which	means	we	don’t	have	to	worry	about	escaping	them.

Although	it’s	generally	better	to	style	elements	by	using	classes	when	possible,
inline	style	binding	is	useful	for	setting	styles	from	variables.	For	example,	the
following	example	outputs	12	elements	of	different	colors,	creating	a	color
swatch:

<div id="app">
 <div
 v-for="n in 12"
 class="color"

 :style="{ backgroundColor: getColor(n) }">
 </div>
</div>
<script>
 new Vue({
 el: '#app',
 methods: {
 getColor(n) {
 return `hsl(${(n - 1) * 30}, 100%, 75%)`;
 }
 }
 });
</script>

After	applying	some	CSS,	we	can	see	a	colour	swatch:	a	red	box,	followed	by	an
orange	box,	all	the	way	through	to	pink.

Vue	also	handles	vendor	prefixing	for	you	automatically:	if	you	set	a	style	that
requires	a	vendor	prefix,	Vue	will	automatically	add	that	for	you.

Array	Syntax
You	can	use	an	array	to	specify	multiple	style	objects:

<div :style="[baseStyles, moreStyles]">...</div>

The	styles	from	both	objects	will	be	applied,	with	the	styles	from	moreStyles
overriding	baseStyles	if	both	specify	the	same	styles.

Multiple	Values
It’s	also	possible	to	provide	multiple	values	in	an	array	to	set	the	last	value	that
the	browser	supports:

<div :style="{ display: ['-webkit-box', '-ms-flexbox', 'flex'] }">...</div>

That’ll	set	display: flex	if	it	is	supported;	otherwise,	it’ll	attempt	-ms-
flexbox,	and	otherwise,	-webkit-box.

Scoped	CSS	with	vue-loader

You	previously	saw	how	to	use	vue-loader	to	split	your	components	into
individual	.vue	files.	As	a	quick	reminder,	here’s	an	example	from	“vue-loader
and	.vue	Files”:

<template>
 <p>The number is {{ number }}</p>
</template>

<script>
 export default {
 props: {
 number: {
 type: Number,
 required: true
 }
 }
 };
</script>

In	addition	to	the	<template>	and	<script>	tags,	it’s	also	possible	to	put
<style>	tags	in	these	files,	which	will	then	be	output	onto	the	page	(or	you	can
set	up	webpack	to	extract	it	into	an	external	CSS	file).	Let’s	say	we	want	to	style
the	previous	example	so	that	the	number	is	bold:

<template>
 <p>The number is {{ number }}</p>
</template>

<script>
 export default {
 props: {
 number: {
 type: Number,
 required: true
 }
 }
 };
</script>

<style>
 .number {
 font-weight: bold;
 }
</style>

The	number	is	now	bold.

Unlike	the	JavaScript,	the	CSS	in	that	component	will	affect	all	the	HTML	on
the	page,	not	just	the	component.	Vue	has	a	way	to	fix	this:	scoped	CSS.	If	we
add	the	scoped	attribute	to	the	style	tag,	Vue	will	automatically	process	the	CSS
and	HTML	so	that	the	CSS	affects	only	the	HTML	in	that	component.

Let’s	take	a	look	at	how	it	works.	If	we	add	the	scoped	attribute	to	the	previous
style	tag	(so	that	it	is	now	<style scoped>),	the	following	HTML	is	output:

<p data-v-e0e8ddca>The number is 10
 </p>

<style>
.number[data-v-e0e8ddca] {
 font-weight: bold;
}
</style>

You	can	see	that	Vue	has	added	a	data	attribute	to	every	element	that’s	part	of	the
component,	and	then	added	it	to	the	CSS	selector	so	that	the	CSS	is	applied	to
only	those	elements.

CSS	Modules	with	vue-loader
As	an	alternative	to	scoped	CSS,	you	can	use	CSS	modules	with	vue-loader:

<template>
 <p>The number is {{ number }}</p>
</template>

<style module>
 .number {
 font-weight: bold;
 }
</style>

The	.number	style	will	be	replaced	by	a	random	style	name,	and
$style.number	will	evaluate	to	that	name,	so	the	CSS	specified	in	the	.number
selector	will	be	applied	to	only	that	single	element.

Preprocessors
You	can	configure	vue-loader	to	run	your	CSS,	JavaScript,	and	HTML	through
preprocessors.	Say	you	want	to	write	SCSS	instead	of	CSS	to	take	advantage	of
features	such	as	nesting	and	variables.	You	can	do	that	in	two	steps—first,	install
sass-loader	and	node-sass	using	npm,	and	then	add	lang="scss"	to	your
style	tag:

<style lang="scss" scoped>
 $color: red;

 .number {
 font-weight: bold;
 color: $color;
 }
</style>

It’s	as	simple	as	that.	Scoped	CSS	is	still	handled	automatically;	there	are	no
extra	steps	to	get	it	working	again.

vue-loader	has	a	load	of	other	features	that	are	beyond	the	scope	of	this	book.	If
you’re	going	to	use	it,	I’d	definitely	recommend	giving	the	documentation	a
read.

A	lot	of	these	features	are	also	available	in	vueify,	the	Browserify	equivalent	of
vue-loader.	However,	vueify	is	not	as	popular	as	vue-loader,	so	I	don’t	cover	it
here.

Summary
In	this	short	chapter,	you	looked	at	various	ways	Vue	helps	you	style	your
application.	You	looked	at	the	special	v-bind:class	and	v-bind:style
attributes,	which	make	it	easier	to	add	and	set	classes	and	styles.	You	also
learned	about	a	few	styling-specific	features	of	vue-loader:	scoped	CSS,	CSS
modules,	and	preprocessing.

Chapter	4.	Render	Functions	and
JSX

You’ve	already	seen	how	to	use	the	template	attribute	to	set	the	HTML	of	a
component,	and	you’ve	also	seen	how	to	use	vue-loader	to	write	your
component	HTML	in	a	<template>	tag.	However,	using	templates	isn’t	the	only
way	to	indicate	what	Vue	should	display	on	the	page:	you	can	choose	to	use	a
render	function	instead.	This	also	enables	you	to	write	JSX	in	your	Vue
application,	which	if	you’re	from	a	React	background,	you	may	be	more
comfortable	with	(although	I	still	recommend	giving	templates	a	try!).

NOTE
You	can	also	use	the	template	attribute	in	your	main	Vue	instance	instead	of	having	Vue	use
the	HTML	in	your	Vue	element.	It’ll	be	automatically	added	to	the	element	you	specify	as	the
Vue	element.

When	you	pass	a	function	to	the	render	property	of	your	Vue	instance,	the
function	is	passed	a	createElement	function,	which	you	can	use	to	indicate	the
HTML	that	should	be	output	to	the	page.	As	a	simple	example,	the	following
renders	<h1>Hello world!</h1>	to	the	page:

new Vue({
 el: '#app',
 render(createElement) {
 return createElement('h1', 'Hello world!');
 }
});

createElement	takes	three	arguments:	the	tag	name	of	the	element	to	be
generated,	an	object	containing	options	(such	as	HTML	attributes,	properties,
event	listeners,	and	class	and	style	bindings),	and	either	a	child	node	or	an	array
of	child	nodes.	The	tag	name	is	required,	and	the	other	two	are	optional	(and	if

you	don’t	specify	the	attributes	object,	you	can	specify	the	children	as	the	second
argument).	Let’s	look	at	each	of	those	individually.

The	Tag	Name
The	tag	name	is	the	simplest	argument	and	the	only	required	one.	It	can	be	either
a	string,	or	a	function	that	returns	a	string.	In	the	previous	example,	we’re
returning	h1,	so	an	<h1>	element	will	be	created.	Render	functions	also	have
access	to	this,	so	you	can	set	the	tag	name	from	a	property	of	the	data	object,
prop,	computed	property,	or	anything	like	that:

new Vue({
 el: '#app',
 render(createElement) {
 return createElement(this.tagName, 'Hello world');
 },
 data: {
 tagName: 'h1'
 }
});

This	capability	is	a	big	advantage	of	render	functions	over	templates,	in	which	it
isn’t	easy	or	readable	to	set	a	tag	name	dynamically.	<{{ tagName }}>	is
invalid	(and	still	not	that	easy	to	read!).

The	Data	Object
The	data	object	is	where	you	specify	attributes	that	will	affect	the	component	or
element.	If	you	were	writing	a	template,	that’s	everything	that	goes	between	the
tag	name	and	the	closing	>.	For	example,	with	<custom-button
type="submit" v-bind:text="buttonText">,	the	attributes	would	be
type="submit" v-bind:text="buttonText".

In	this	example,	type	is	a	normal	HTML	attribute	being	passed	through	to	the
component,	and	text	is	a	component	prop	bound	to	the	buttonText	variable.
For	the	same	example	using	createElement,	you	could	write	the	following:

new Vue({

 el: '#app',
 render(createElement) {
 return createElement('custom-button', {
 attrs: {
 type: 'submit'
 },
 props: {
 text: this.buttonText
 }
 });
 }
});

You’ll	notice	that	we’re	not	using	v-bind	at	all	anymore;	this	is	because	we	can
refer	to	the	variable	directly	as	this.buttonText.	Because	this.buttonText	is
a	dependency	of	the	function,	the	render	function	will	be	called	again	whenever
buttonText	is	updated	and	the	DOM	updated	automatically,	the	same	as	with
templates.

See	Example	4-1	for	all	the	options	required	to	do	everything	you’ve	learned	so
far	in	this	book.

Example	4-1.	The	attributes	of	the	options	object
{
 // HTML attributes
 attrs: {
 type: 'submit'
 },

 // Props to be passed to components
 props: {
 text: 'Click me!'
 },

 // DOM properties such as innerHTML (instead of v-html)
 domProps: {
 innerHTML: 'Some HTML'
 },

 // Event listeners
 on: {
 click: this.handleClick
 },

 // The same as slot="exampleSlot" - used when the component is a child of
 // another component

 slot: 'exampleSlot',

 // The same as key="exampleKey" - used for components generated in a loop
 key: 'exampleKey',

 // The same as ref="exampleRef"
 ref: 'exampleRef',

 // The same as v-bind:class="['example-class'...
 class: ['example-class', { 'conditional-class': true }],

 // The same as v-bind:style="{ backgroundColor: 'red' }"
 style: { backgroundColor: 'red' }
}

Note	that	class	and	style	are	specified	separately	from	the	attrs	property.
This	is	because	of	the	v-bind	helpers;	if	you	just	specify	the	class	or	styles	as	a
property	of	the	attrs	object,	you	won’t	be	able	to	specify	classes	as	an	array	or
object,	or	your	styles	as	an	object.

There	are	a	couple	of	other	properties	for	things	that	haven’t	been	covered	in	this
book:	check	out	the	official	documentation	for	a	full	list.

Children
The	third	and	final	argument	is	where	you	specify	the	children	of	the	element.
This	can	either	be	an	array	or	a	string.	If	it’s	a	string,	the	specified	string	will	be
rendered	as	the	text	of	the	element;	and	if	it’s	an	array,	you	can	call
createElement	again	inside	the	array	to	generate	a	complicated	tree.

NOTE
If	you’re	specifying	children	but	not	the	data	object,	you	can	pass	this	as	the	second	argument
instead	of	the	third.

Let’s	take	the	following	template	from	a	previous	section:

<div>
 <button v-on:click="counter++">Click to increase counter</button>
 <p>You've clicked the button {{ counter }}</p> times.

</div>

To	write	the	same	template	by	using	createElement,	you’d	write	the	following:

 render(createElement) {
 return createElement(
 'div',
 [
 createElement(
 'button',
 {
 on: {
 click: () => this.counter++,
 }
 },
 'Click to increase counter'
),
 createElement(
 'p',
 `You've clicked the button ${this.counter} times`
)
]
);
 }

JSX
The	previous	example	seems	like	a	lot	of	code	to	do	what	we	did	in	a	four-line
template.	Luckily,	with	the	help	of	babel-plugin-transform-vue-jsx,	you	can
write	your	render	function	by	using	JSX	along	with	the	Babel	plug-in	to
compile	the	JSX	into	createElement	calls	that	Vue	understands.	Note	that
internally	(and	throughout	the	JSX	ecosystem),	the	createElement	function	is
usually	aliased	to	a	shorter	name,	h,	but	you	don’t	normally	need	to	know	that.

I	won’t	cover	how	to	install	babel-plugin-transform-vue-jsx	here;	check	out	the
documentation	for	the	plug-in	to	see	how	to	do	that.

After	the	Babel	plug-in	has	been	installed,	the	previous	code	can	be	rewritten
like	so:

 render() {
 return (
 <div>

 <button onClick={this.clickHandler}>Click to increase counter</button>
 <p>You've clicked the button {counter} times</p>
 </div>
);
 }

That’s	much	better.	A	couple	of	other	nice	features	of	JSX	work	with	Vue	too.

In	addition	to	being	able	to	import	and	use	components	the	same	way	you	can	in
templates—by	specifying	the	name	of	the	component	as	the	tag	name—it’s	also
possible	to	import	components	the	React	way	too.	If	the	variable	the	component
is	imported	with	begins	with	a	capital	letter,	you	can	use	it	without	having	to	put
it	in	the	components	object	or	using	Vue.component().	For	example:

import MyComponent from './components/MyComponent.vue';

new Vue({
 el: '#app',
 render() {
 return (
 <MyComponent />
);
 }
});

JSX	spread	is	also	supported.	Just	as	with	React,	you	can	use	the	spread	operator
on	an	object	of	properties,	and	it	will	be	merged	with	the	other	properties	you’ve
specified	and	applied	to	the	element:

 render() {
 const props = {
 class: 'world',
 href: 'https://www.oreilly.com/'
 };

 return (
 O'Reilly Media
);
 }

This	would	generate	a	link	to	oreilly.com	with	a	class	attribute	equal	to	hello
world.

https://www.oreilly.com

Summary
This	chapter	explained	how	you	can	use	render	functions	as	an	alternative	to
template	strings	to	build	HTML.	You	do	this	by	using	the	createElement
function,	which	takes	three	arguments:	the	tag	name,	the	data	object,	and	the
children	of	the	element.	You	can	also	use	JSX	instead	of	calling	createElement,
using	babel-plugin-transform-vue-jsx.

Chapter	5.	Client-Side	Routing
with	vue-router

With	the	core	Vue.js	library	introduced	in	the	previous	chapters,	we	can	display
and	work	with	data	on	a	page.	However,	a	fully	featured	website	requires	more
than	just	that.	You	may	have	noticed	on	some	websites	that	you	can	navigate
around	the	site	without	downloading	the	new	page	from	the	server,	or	if	you’ve
used	another	framework	before,	you’ve	probably	already	met	client-side	routing.

vue-router	is	a	library	for	Vue	that	means	we	can	handle	the	routing	of	an	app	in
the	browser	instead	of	on	the	server	as	in	traditional	websites.	Routing	is	the	act
of	taking	a	path	(for	example,	/users/12345/posts)	and	deciding	what	should	be
displayed	on	the	page.

Installation
As	with	Vue	itself,	there	are	multiple	ways	to	install	vue-router.	You	can	use	a
CDN	by	adding	the	following:

<script src="https://unpkg.com/vue-router"></script>

Or	if	you’re	using	npm,	you	can	install	it	using	npm install --save vue-
router.	Then,	if	you’re	using	a	bundler	such	as	webpack,	you	will	need	to	call
Vue.use(VueRouter)	to	install	vue-router:

import Vue from 'vue';
import VueRouter from 'vue-router';

Vue.use(VueRouter);

This	step	adds	components	to	your	app	that	you	will	meet	in	the	next	few
sections.

Basic	Usage
To	set	up	the	router,	you	need	to	give	it	an	array	of	paths	and	the	corresponding
components:	when	the	path	is	matched,	the	component	will	be	displayed.

The	following	creates	a	simple	two-path	router:

import PageHome from './components/pages/Home';
import PageAbout from './components/pages/About';

const router = new VueRouter({
 routes: [
 {
 path: '/',
 component: PageHome
 },
 {
 path: '/about',
 component: PageAbout
 }
]
});

Now	to	use	that	router,	we	have	to	do	two	things.	First,	we	have	to	pass	it	in	to
Vue	when	we	initialize	our	application.	Then,	to	get	it	to	display	on	the	page,	we
need	to	add	a	special	<router-view />	component.

To	pass	the	router	into	Vue,	you	can	just	pass	it	in	using	the	router	property
when	you	initialize	Vue:

import router from './router';

new Vue({
 el: '#app',
 router: router
});

Then	in	your	template,	put	the	<router-view />	component	wherever	you	want
the	component	returned	by	the	router	to	display.

See	Example	5-1	for	a	full	basic	setup	that	will	display	different	things
depending	on	the	path	requested.

Example	5-1.	Sample	code	of	a	router	using	vue-router

<div id="app">
 <h1>Site title</h1>

 <main>
 <router-view />
 </main>

 <p>Page footer</p>
</div>
<script>
 const PageHome = {
 template: '<p>This is the home page</p>'
 };
 const PageAbout = {
 template: '<p>This is the about page</p>'
 };

 const router = new VueRouter({
 routes: [
 { path: '/', component: PageHome },
 { path: '/about', component: PageAbout }
]
 });

 new Vue({
 el: '#app',
 router,
 });
</script>

After	setting	up	the	router	and	adding	styling,	you	will	see	the	following	content
when	you	access	the	root	path:

And	you’ll	see	the	following	when	you	access	/about:

HTML5	History	Mode
By	default,	vue-router	uses	the	URL	hash	to	store	the	path.	To	access	the	/about
route	on	<yoursite>.com,	you	would	go	to	http://<yoursite>.com/#/about.
However,	nearly	every	browser	these	days	supports	the	HTML5	history	API,
which	allows	developers	to	update	the	URL	without	going	to	a	new	page.

You	can	tell	vue-router	to	use	the	HTML5	history	API	by	changing	the	router
mode	to	history:

const router = new VueRouter({
 mode: 'history',
 routes: [
 { path: '/', component: PageHome },
 { path: '/about', component: PageAbout }
]
});

Now,	if	you	go	to	http://<yoursite>.com/about,	you	get…a	404	page.	In	addition
to	telling	the	client-side	code	to	look	at	the	full	path	instead	of	the	hash,	you
need	to	tell	your	server	to	respond	with	your	HTML	page	on	every	request	it
doesn’t	recognize	(for	example,	not	when	you	request	a	CSS	file).

The	way	you	do	this	varies,	depending	on	what’s	powering	your	server,	but	it’s
generally	pretty	simple—the	vue-router	documentation	has	a	section	for	most
popular	servers.

1

http://<yoursite>.com/#/about
http://<yoursite>.com/about

Dynamic	Routing
The	previous	example	is	great	for	simple	sites,	but	what	if	we	want	to	do
something	more	complicated,	such	as	match	a	user	ID	as	part	of	a	path?	vue-
router	supports	dynamic	path	matching,	meaning	that	you	can	specify	the	path
by	using	a	special	syntax,	and	the	component	will	be	accessible	under	all	the
paths	that	match	that	route.	For	example,	if	we	wanted	to	have	our	component
display	when	the	path	is	/user/1234,	where	1234	can	be	anything,	we	can	specify
the	following	route:

const router = new VueRouter({
 routes: [
 {
 path: '/user/:userId',
 component: PageUser
 }
]
});

Then	any	path	matching	/user/:userId	will	be	shown	the	PageUser	component.

NOTE
vue-router	uses	the	path-to-regexp	library	for	this—the	same	library	used	by	Express,	Koa
(both	the	official	and	unofficial	routers),	and	react-router,	so	if	you’ve	used	any	of	those
before,	you	will	recognize	this	syntax.

Inside	the	component,	you	can	access	the	current	route	by	using	the
this.$route	property.	This	object	contains	useful	properties	such	as	the	full
path	currently	being	accessed,	the	query	parameters	of	the	URL	(for	example,	?
lang=en),	and	most	usefully	for	this	example,	a	params	object	containing	all	the
parts	of	the	URL	that	were	matched	dynamically.	With	this	example,	if	you
access	/user/1234,	the	params	object	will	equal	the	following:

{
 "userId": "1234"
}

You	can	then	use	this	data	to	do	whatever	you	want	with.	In	this	case,	you	might
want	to	use	it	to	send	off	an	API	request	to	grab	the	users,	data,	and	then	display
it	on	the	page.

WARNING
Although	you	might	expect	that	userId	would	be	a	number,	vue-router	has	extracted	it	from	a
path	(which	is	a	string)	and	has	no	way	of	knowing	that	it	is	supposed	to	be	a	number,	so
userId	is	in	fact	a	string.	If	you	want	to	use	it	as	a	number,	you’ll	have	to	convert	it	yourself
by	using	parseInt,	parseFloat,	or	Number.

Note	that	the	dynamic	part	of	the	URL	doesn’t	have	to	be	at	the	end	of	the	URL:
/user/1234/posts	is	perfectly	valid.	Also,	you	can	have	more	than	one	dynamic
segment:	matching	/user/1234/posts/2	against	/user/:userId/posts/:pageNumber
will	result	in	the	following	params	object:

{
 "userId": "1234",
 "pageNumber": "2"
}

Reacting	to	Route	Updates
When	navigating	between	/user/1234	and	/user/5678,	the	same	component	will
be	reused,	and	so	none	of	the	life-cycle	hooks	covered	in	Chapter	1	such	as
mounted	will	be	called.	Instead,	you	can	use	the	beforeRouteUpdate	guard	to
run	some	code	when	the	dynamic	segment	of	the	URL	changes.

Let’s	create	a	PageUser	component	that	calls	an	API	when	it	is	mounted,	and
calls	it	again	when	the	route	changes:

<template>
 <div v-if="state === 'loading'">
 Loading user…
 </div>
 <div>
 <h1>User: {{ userInfo.name }}</h1>
 ... etc ...
 </div>
</template>

<script>
 export default {
 data: () => ({
 state: 'loading',
 userInfo: undefined
 }),
 mounted() {
 this.init();
 },
 beforeRouteUpdate(to, from, next) {
 this.state = 'loading';
 this.init();
 next();
 },
 methods: {
 init() {
 fetch(`/api/user/${this.$route.params.userId}`)
 .then((res) => res.json())
 .then((data) => {
 this.userInfo = data;
 });
 }
 }
 };
</script>

The	preceding	code	loads	the	data	for	the	first	user	from	the	API,	displays	that
information,	and	then	if	the	route	changes	(say,	if	the	user	clicks	a	link	to	go
from	one	user	to	another),	it	makes	another	call	to	the	API	to	get	the	data	for	the
second	user.

Note	that	we’ve	moved	the	logic	that	we	would	usually	have	in	mounted	into	a
method,	which	we	call	both	in	the	mounted	hook	and	the	beforeRouteUpdate
guard.	This	avoids	having	duplicate	code—we	pretty	much	always	want	to	be
doing	the	same	thing	in	both	places.

We’ll	explore	guards	further	later	in	this	chapter,	including	why	you	have	to	call
next()	at	the	end	of	the	function.

NOTE
beforeRouteUpdate	was	added	in	Vue	2.2	and	so	wasn’t	available	before	then.	Before	2.2,
you	had	to	watch	the	$route	object	for	changes:

const PageUser = {
 template: '<div>...user page...</div>',
 watch: {
 '$route'() {
 console.log('Route updated');
 }
 }
};

Passing	Params	to	Components	as	Props
As	an	alternative	to	using	this.$route.params	in	your	component,	you	can	get
vue-router	to	pass	in	the	params	as	props	to	your	router	component.	For
example,	let’s	take	the	following	component:

const PageUser = {
 template: '<p>User ID: {{ $route.params.userId }}</p>'
};

const router = new VueRouter({
 routes: [
 {
 path: '/user/:userId',
 component: PageUser
 }
]
});

Navigating	to	/user/1234	will	result	in	“User	ID:	1234”	being	output	to	the	page.

To	tell	vue-router	to	pass	the	user	ID	in	as	a	prop	instead,	you	can	specify
props: true	on	the	router:

const PageUser = {
 props: ['userId'],
 template: '<p>User ID: {{ userId }}</p>'
};

const router = new VueRouter({
 routes: [
 {
 path: '/user/:userId',
 component: PageUser,

 props: true
 }
]
});

The	advantage	of	using	props	instead	of	referring	to	$route.params	is	that	the
component	is	no	longer	closely	coupled	to	vue-router.	Imagine	in	the	future	you
want	to	display	more	than	one	user	per	page;	with	the	first	code	example,	that
would	be	tricky,	but	with	the	second	example,	it	would	be	a	lot	easier,	as	you
could	just	call	the	component	in	another	page	as	if	it	were	an	ordinary
component.

Nested	Routes
You’ll	find	that	after	you	build	sufficiently	complicated	apps,	you’ll	have
sections	of	your	sites	in	which	you	want	every	page	to	have	common	styling	or
content.	For	example,	maybe	you	have	an	admin	section	and	you	want	to	add
another	header	below	your	normal	site	header	to	navigate	around	your	admin
section,	or	maybe	you	have	a	page	displaying	a	product	and	you	want	to	add	a
tab	component	that	changes	the	URL	too.	For	some	examples,	such	as	the	admin
section	header	example,	it	would	be	easy	enough	to	just	store	the	header	in	a
component	and	manually	include	it	on	every	single	page.	For	other	examples,
such	as	a	product	page	that	has	only	a	small	portion	of	the	content	that	is
changing,	you	don’t	really	want	the	individual	tabs	to	be	responsible	for
displaying	the	rest	of	the	page—it’s	much	better	to	use	a	nested	route	instead.

A	nested	route	allows	you	to	specify	children	of	a	route	and	gives	you	another
<router-view />	component	to	display	them	in.	For	example,	let’s	build	a
settings	section	of	a	website,	with	a	sidebar	for	navigating	between	settings
pages.	/settings/profile	will	be	a	page	for	users	to	modify	their	profiles,	and
/settings/email	will	allow	them	to	modify	their	email	preferences.

The	profile	page	at	/settings/profile	looks	like	this:

The	email	preferences	page	at	/settings/email	looks	like	this:

As	you	can	see,	both	pages	share	a	header	and	a	sidebar.	The	header	will	be	dealt
with	the	normal	way	(it	will	be	outside	the	root	<router-view />	component),
but	we	don’t	want	the	sidebar	to	display	on	all	pages,	only	the	settings	pages.

To	achieve	this,	we	create	a	/settings	route,	and	then	give	that	route	two	child
routes,	profile	and	email.	Here	is	what	the	router	looks	like:

import PageSettings from './components/pages/Settings';
import PageSettingsProfile from './components/pages/SettingsProfile';
import PageSettingsEmail from './components/pages/SettingsEmail';

const router = new VueRouter({
 routes: [
 {

 path: '/settings',
 component: PageSettings,
 children: [
 {
 path: 'profile',
 component: PageSettingsProfile,
 },
 {
 path: 'email',
 component: PageSettingsEmail,
 }
]
 }
]
});

Then,	in	the	PageSettings	component,	we	can	use	another	<router-view />
component:

<div>
 <the-sidebar />
 <router-view />
</div>

Now,	accessing	/settings/profile	results	in	the	following	HTML:

<div id="app">
 <h1>Site title</h1>

 <main>
 <div>
 <div class="sidebar">
 ...sidebar HTML...
 </div>
 </div>

 <div class="page-profile">
 ...profile settings page HTML...
 </div>
 </main>

 <p>Page footer</p>
</div>

As	you	can	see,	the	page	has	the	header	and	footer	from	outside	the	root

<router-view />	from	the	example	in	the	first	section	of	this	paragraph,	the
sidebar	from	inside	the	settings	page	but	outside	the	second	<router-view />
component,	and	the	contents	of	the	profile	settings	page.

Redirect	and	Alias
Sometimes	you	want	to	redirect	from	one	page	to	another;	for	example,	maybe
you’ve	decided	to	rename	/settings	to	/preferences.	In	that	case,	you	don’t	want
your	users	who	are	used	to	going	to	/settings	to	see	an	error	page,	and	you	don’t
want	search	engines	to	be	linking	to	pages	that	don’t	exist	anymore.

To	do	this,	you	can	specify	a	route	with	a	direct	property	instead	of	a
component:

const router = new VueRouter({
 routes: [
 {
 path: '/settings',
 redirect: '/preferences'
 }
]
});

Now,	anyone	accessing	/settings	will	be	redirected	to	/preferences.

An	alternative	to	using	redirects	is	to	specify	an	alias	of	a	component.	For
example,	if	you	want	the	settings	page	to	be	accessible	from	both	/settings	and
/preferences,	you	can	give	the	/settings	route	an	alias	of	/preferences:

import PageSettings from './components/pages/Settings';

const router = new VueRouter({
 routes: [
 {
 path: '/settings',
 alias: '/preferences',
 component: PageSettings
 }
]
});

I’ve	found	this	useful	in	the	past	when	I	want	both	/user	and	/user/:userId	to
point	to	the	same	component.

Navigation
OK,	so	we	have	some	routing	now.	If	you	navigate	to	/user/1234,	you	will	see	a
different	thing	than	if	you	navigate	to	/preferences,	even	though	the	same	content
is	being	served	by	the	server.	But	how	can	we	enable	the	user	to	navigate
between	routes?	The	obvious	answer—using	<a>	tags—isn’t	the	best	one.
Although	using	anchors	to	link	between	pages	will	technically	work,	if	you’re
using	HTML5	history	mode,	the	page	will	reload	every	time	you	click	a	link,	as
in	a	traditional	website.	We	can	do	better!	Because	everything	is	handled	client-
side,	we	can	navigate	between	pages	without	having	to	reload	the	page.	The
router	will	even	update	the	URL	for	you.

To	do	this,	use	the	<router-link>	element	instead	of	the	<a>	element.	It	works
similarly	to	the	traditional	anchor	tag:

<router-link to="/user/1234">Go to user #1234</router-link>

Clicking	that	link	will	immediately	take	you	to	/user/1234	without	having	to
load	a	new	page.	This	improves	the	performance	of	your	sites	a	ton.	After	the
initial	page	load,	it’s	super	quick	to	navigate	between	pages	as	the	HTML,
JavaScript,	and	CSS	has	been	downloaded	already.

In	addition	to	handling	navigation	without	forcing	the	page	to	reload,	vue-router
also	automatically	handles	your	mode	for	you:	using	hash	mode,	the	preceding
link	will	take	you	to	#/user/1234,	whereas	using	history	mode,	it’ll	take	you	to
/user/1234.

The	<router-link>	component	has	a	few	properties	beyond	to.	I	cover	the
most	important	ones	here,	but	check	out	the	API	documentation	for	the	full	list.

The	output	Tag
By	default,	using	<router-link>	results	in	an	<a>	tag	being	output	to	the	page.
For	instance,	the	example	from	the	previous	section	results	in	the	following

output:

Go to user #1234

NOTE
The	href	won’t	be	used	if	you	click	the	link,	as	Vue	will	have	added	an	event	listener	that	will
cancel	the	default	click	event	to	handle	the	navigation	itself.	It’s	still	useful	to	have	for	a	few
reasons,	though,	such	as	being	able	to	see	where	a	link	is	going	by	hovering	over	it	or	being
able	to	open	a	link	in	a	new	tab	(which	isn’t	handled	by	vue-router).

Sometimes,	however,	you	might	want	to	output	an	element	other	than	an	anchor
tag,	such	as	a	list	element	in	a	navigation	bar.	You	can	use	the	tag	property	to	do
that:

<router-link to="/user/1234" tag="li">Go to user #1234</router-link>

This	results	in	the	following	being	output	to	the	page:

Go to user #1234

Vue	will	then	add	an	event	listener	to	the	element	that	detects	when	it	is	clicked
and	deals	with	the	navigation.

This	isn’t	optimal,	though—as	we’ve	lost	the	anchor	tag	and	the	href	attribute,
we’ve	lost	a	couple	of	important	native	browser	behaviors:	the	browser	doesn’t
know	that	the	list	item	is	a	link,	so	hovering	over	it	won’t	give	you	any
information	about	the	link;	you	can’t	right-click	and	open	the	link	in	a	new	tab;
and	assistive	technology	such	as	a	screen	reader	won’t	announce	the	element	as	a
link.

To	fix	this,	we	can	add	an	anchor	tag	into	the	<router-link>	element:

<router-link to="/user/1234" tag="li"><a>Go to user #1234</router-link>

The	output	HTML	is	now	as	follows:

Go to user #1234

Perfect.	vue-router	will	handle	the	routing	when	it	can,	but	we’ll	have	all	the
normal	behavior	we	expect	from	links.

Active	Class
A	link	is	active	when	the	path	in	the	to	property	of	the	<router-link>
component	matches	the	path	of	the	current	page.	If	you’re	on	/user/1234,	that
link	will	be	active.

When	a	link	is	active,	vue-router	automatically	applies	a	class	to	the	generated
element.	By	default,	this	class	is	router-link-active,	but	you	can	configure
the	class	added	by	using	the	active-class	property.	This	is	useful	when	you’re
using	a	UI	library	or	existing	code	in	which	the	active	link	is	already	set	to
something	else.	For	example,	if	you’re	using	Bootstrap	and	have	a	navigation
bar	(navbar	in	Bootstrap),	you	set	the	current	active	link	by	using	the	active
class.

Let’s	get	a	simple	Bootstrap	navbar	working	with	Vue.	Here’s	what	we’re
aiming	for:

<ul class="nav navbar-nav">
 <li class="active">Blog
 User #1234

We	need	to	change	two	things.	First,	the	active	class	is	being	added	to	the	li
element,	not	the	a	element,	so	we	need	to	tell	vue-router	to	output	an	li	element
instead	of	the	default	a	link.	Second,	the	class	being	added	is	active,	not
router-link-active,	so	that	needs	changing	too.

Here’s	our	Vue-ified	code:

<ul class="nav navbar-nav">
 <router-link to="/blog" tag="li" active-class="active">
 <a>Blog
 </router-link>
 <router-link to="/user/1234" tag="li" active-class="active">
 <a>User #1234
 </router-link>

The	outputted	HTML	is	exactly	the	same	as	the	example	before	we	added	Vue;
vue-router	even	adds	the	href	attribute	to	the	<a>	elements.

Native	Events
If	you	want	to	add	a	click	event	handler	to	a	<router-link>,	you	can’t	just	use
@click.	The	following	will	not	work:

<!-- This will not work -->
<router-link to="/blog" @click="handleClick">Blog</router-link>

By	default,	using	v-on	on	a	component	listens	to	custom	events	emitted	by	the
component.	You	saw	this	in	Chapter	2.	You	can	use	the	.native	modifier	to
listen	to	the	native	event	instead	of	the	custom	event:

<router-link to="/blog" @click.native="handleClick">Blog</router-link>

Now	when	the	link	is	clicked,	the	handleClick	method	will	be	called.

Programmatic	Navigation
In	addition	to	enabling	the	user	to	navigate	using	links,	you	can	also	navigate
programmatically	using	a	couple	of	methods	on	the	router.	The	methods	imitate
the	browser’s	native	history	methods—history.pushState(),
history.replaceState(),	and	history.go()—so	if	you’re	familiar	with
them,	you’ll	recognize	the	syntax.

To	go	to	a	path,	you	can	use	router.push()	(or	this.$router.push()	if
you’re	in	a	component):

router.push('/user/1234');

This	does	the	equivalent	of	clicking	a	<router-link>	component	with	a	to
property	of	/user/1234—in	fact,	vue-router	uses	router.push()	internally
when	you	click	a	<router-link>	component.

There’s	also	router.replace(),	which	behaves	similarly	to	router.push():

it’ll	take	you	to	the	route	you’ve	specified.	The	difference	is	that	while
router.push()	will	add	a	new	entry	to	the	history—so,	if	the	user	presses	the
Back	button,	the	router	will	go	back	to	the	previous	route—router.replace()
replaces	the	current	entry,	so	the	Back	button	will	go	back	to	the	route	before.

Generally,	you	want	router.push(),	but	router.replace()	is	useful	in
specific	cases.	For	example,	if	you	have	human-readable	article	URLs	such	as
/blog/hello-world,	if	the	user	renames	the	post,	you	might	want	to	use
router.replace()	to	go	to	/blog/hello-world,	as	there	is	no	point	in	having
both	URLs	in	the	history.

Finally,	router.go()	allows	you	to	navigate	backward	and	forward	through
history,	as	if	pressing	the	browser	Back	and	Forward	buttons.	To	go	back	a
record,	you’d	use	router.go(-1),	and	to	go	forward	10	records,	you’d	use
router.go(1).	If	there	aren’t	that	many	records,	the	function	call	will	fail
silently.

Navigation	Guards
Let’s	say	you	want	to	restrict	users	who	aren’t	logged	in	from	accessing	certain
sections	of	your	app.	You	have	a	userAuthenticated()	function	that	returns
true	if	the	user	is	logged	in,	but	what	now?

vue-router	provides	functionality	that	allows	you	to	run	code	before	navigation
occurs	and,	if	you	tell	it	to,	cancel	the	navigation	or	send	the	user	somewhere
else.

You	can	use	router.beforeEach()	to	add	a	guard	to	the	router.	It’s	passed
three	arguments:	to,	from,	and	next,	where	to	and	from	are	the	routes	being
navigated	to	and	from,	and	next	is	a	callback	where	you	can	tell	vue-router	to
proceed	with	the	navigation,	cancel	it,	redirect	to	somewhere	else,	or	register	an
error.

Let’s	look	at	a	guard	that	stops	unauthenticated	users	from	being	able	to	access
anything	starting	with	/account:

router.beforeEach((to, from, next) => {
 if (to.path.startsWith('/account') && !userAuthenticated()) {

 next('/login');
 } else {
 next();
 }
});

If	the	path	of	the	route	being	navigated	to	starts	with	/account	and	the	user	isn’t
logged	in,	the	user	will	be	redirected	to	/login;	otherwise,	next()	will	be	called
without	any	arguments,	and	they’ll	be	able	to	see	the	account	page	they
requested.	It’s	important	to	remember	to	call	next();	otherwise,	the	guard	will
never	be	resolved!

Checking	the	path	in	the	guard	can	get	tedious	and	confusing	when	you	have	a
site	with	a	lot	of	routes,	so	another	feature	you’ll	find	useful	here	is	route	meta
fields.	You	can	add	a	meta	property	to	the	route,	and	then	access	it	again	from
the	guard.	For	example,	let’s	set	a	requiresAuth	property	on	the	account	route
and	check	that	in	the	guard	instead:

const router = new VueRouter({
 routes: [
 {
 path: '/account',
 component: PageAccount,
 meta: {
 requiresAuth: true
 }
 }
]
});

router.beforeEach((to, from, next) => {
 if (to.meta.requiresAuth && !userAuthenticated()) {
 next('/login');
 } else {
 next();
 }
});

Now,	whenever	a	user	accesses	/account,	the	router	will	check	the
requiresAuth	property	of	the	router,	and	if	the	user	isn’t	authenticated,	will
redirect	them	to	the	login	page.

WARNING
When	using	nested	routes,	to.meta	will	equal	the	child	component,	not	the	parent.	If	you	add
the	meta	object	to	/account	and	the	user	is	accessing	/account/email,	the	meta	object	checked
will	be	the	one	for	the	child,	not	the	parent.	To	work	around	this,	you	can	iterate	through
to.matched,	which	contains	the	parent	routes	as	well:

router.beforeEach((to, from, next) => {
 const requiresAuth = to.matched.some((record) => {
 return record.meta.requiresAuth;
 }

 if (requiresAuth && !userAuthenticated()) {
 next('/login');
 } else {
 next();
 }
});

Now	if	you	access	/account/email	and	that	route	is	a	child	route	of	/account,	the	meta
objects	for	both	of	them	will	be	checked,	not	just	the	meta	object	for	/account/email.

In	addition	to	beforeEach,	which	runs	before	navigation,	an	afterEach	guard
that	runs	afterward.	Functions	provided	to	this	are	passed	only	two	arguments,
to	and	from,	and	so	cannot	affect	the	navigation	itself.	It’s	a	useful	place	to	do
stuff	such	as	setting	the	page	title,	though:

const router = new VueRouter({
 routes: [
 {
 path: '/blog',
 component: PageBlog,
 meta: {
 title: 'Welcome to my blog!'
 }
 }
]
});

router.afterEach((to) => {
 document.title = to.meta.title;
});

That	code	will	look	at	the	meta	attribute	of	the	route	every	time	page	navigation
occurs	and	set	the	page	title	to	the	title	attribute	of	the	meta	object.

Per-Route	Guards
In	addition	to	defining	beforeEach	and	afterEach	guards	on	the	router,	you
can	define	beforeEnter	guards	on	individual	routes:

const router = new VueRouter({
 routes: [
 {
 path: '/account',
 component: PageAccount,
 beforeEnter(to, from, next) {
 if (!userAuthenticated()) {
 next('/login');
 } else {
 next();
 }
 }
 }
]
});

These	beforeEnter	guards	behave	in	exactly	the	same	way	as	beforeEach
guards,	just	applied	only	to	individual	routes	instead	of	all	of	them.

In-Component	Guards
Finally,	you	can	also	specify	guards	in	components	themselves.	You	can	use
three	guards:	beforeRouteEnter	(the	equivalent	of	beforeEach);
beforeRouteUpdate	(which	you	met	earlier	in	this	chapter);	and
beforeRouteLeave	(which	is	called	before	navigating	away	from	a	route).	All
three	of	those	guards	accept	the	same	three	arguments	as	beforeEach	and
beforeEnter.

Let’s	take	our	previous	authentication	examples	and	apply	the	same	logic	in	a
component:

const PageAccount = {
 template: '<div>...account page...</div>',

 beforeRouteEnter(to, from, next) {
 if (!userAuthenticated()) {
 next('/login');
 } else {
 next();
 }
 }
};

Note	that	this	is	undefined	in	beforeRouterEnter,	because	the	component
hasn’t	been	created	yet.	Instead,	you	can	pass	a	callback	to	next,	which	will	be
passed	the	component	as	the	first	argument:

const PageAccount = {
 template: '<div>...account page...</div>',
 beforeRouteEnter(to, from, next) {
 next((vm) => {
 console.log(vm.$route);
 });
 }
};

You	can	use	this	in	beforeRouteUpdate	and	beforeRouteLeave	as	you	can	in
most	other	places	in	the	component,	and	so	passing	a	callback	to	next	isn’t
supported	for	them.

Route	Order
vue-router	internally	picks	which	route	to	display	by	going	through	the	array	of
routes	and	picking	the	first	one	that	matches	the	current	URL.	Knowing	this	is
important—it	means	that	the	order	of	the	routes	is	important.	Take	the	following
routers:

const routerA = new VueRouter({
 routes: [
 {
 path: '/user/:userId',
 component: PageUser
 },
 {
 path: '/user/me',
 component: PageMe

 }
]
});

const routerB = new VueRouter({
 routes: [
 {
 path: '/user/me',
 component: PageMe
 },
 {
 path: '/user/:userId',
 component: PageUser
 }
]
});

They	look	similar:	both	of	them	define	two	routes,	one	for	a	user	to	access	their
own	page	at	/user/me	and	another	to	access	other	users	pages	at	/user/:userId.

Using	routerA,	it	is	impossible	to	access	PageMe.	This	is	because	vue-router	has
gone	through	the	router	testing	whether	each	path	matches:	if	you	access
/user/me,	that	matches	/user/:userId,	so	userId	is	set	to	me	and	the	PageUser
component	is	displayed.	With	routerB,	/user/me	matches	first,	so	that	component
is	used,	and	then	anything	else	results	in	the	PageUser	route	being	displayed.

404	Pages
We	can	use	the	fact	that	vue-router	searches	through	the	routes	in	order	with	the
wildcard	operator	(*)	to	display	an	error	page	when	no	other	route	has	matched.
To	do	that	is	as	simple	as	follows:

const router = new VueRoute({
 routes: [
 // ...your other routes...
 {
 path: '*',
 component: PageNotFound
 }
]
});

The	PageNotFound	component	will	display	when	no	other	route	has	matched.

When	using	nested	routes,	if	none	of	the	child	paths	match,	the	router	carries	on
looking	down	the	array	of	routes	outside	the	parent,	so	the	same	PageNotFound
component	will	be	used	for	them.	If	you	want	the	error	page	to	display	in	the
parent	component,	you’ll	need	to	add	the	wildcard	route	to	the	array	of	child
routes	too:

const router = new VueRoute({
 routes: [
 {
 path: '/settings',
 component: PageSettings,
 children: [
 {
 path: 'profile',
 component: PageSettingsProfile
 },
 {
 path: '*',
 component: PageNotFound
 }
]
 }
 {
 path: '*',
 component: PageNotFound
 }
]
});

Now	the	same	PageNotFound	component	will	display,	but	with	the	sidebar	from
the	PageSettings	component	too.

Route	Names
The	final	feature	of	vue-router	I’ll	cover	in	this	chapter	is	the	ability	to	give	your
routes	names,	and	then	use	them	to	refer	to	your	routes	instead	of	their	paths.
Just	add	a	name	attribute	to	the	route	in	the	router:

const router = new VueRouter({
 routes: [
 {
 path: '/',
 name: 'home',

 component: PageHome
 },
 {
 path: '/user/:userId',
 name: 'user',
 component: PageUser
 }
]
});

Now	instead	of	linking	to	the	path,	you	can	link	using	the	name	instead:

<router-link :to="{ name: 'home' }">Return to home</router-link>

TIP
The	following	two	lines	of	code	are	equivalent:

<router-link to="/user/1234">User #1234</router-link>
<router-link :to="{ path: '/user/1234' }">
User #1234
</router-link>

The	first	is	just	short	for	the	second.

You	can	use	the	same	syntax	with	router.push():

router.push({ name: 'home' });

Naming	your	routes	and	referring	to	them	by	using	only	their	names	instead	of
their	paths	means	that	the	route	and	the	path	are	no	longer	so	tightly	coupled:	to
change	the	path	of	a	route,	you	have	to	change	only	the	path	in	the	router	instead
of	having	to	go	through	all	your	existing	links	and	updating	them.

To	link	to	a	route	with	params	such	as	the	preceding	user	route,	you	can	specify
them	in	the	params	property	of	the	object:

<router-link :to="{ name: 'user', params: { userId: 1234 }}">
User #1234
</router-link>

Summary
In	this	chapter,	you	looked	at	using	vue-router	to	create	a	single-page	application
—an	application	with	multiple	pages	in	which	the	routing	is	handled	client-side.
You	looked	at	various	ways	to	configure	a	router,	using	dynamic	routes	to	create
dynamic	paths;	nested	routes	to	create	child	routes;	and	redirects,	aliases,	and
wildcard	paths	for	404	pages.	You	also	looked	at	<router-link>	to	create	links,
named	routes	to	almost	entirely	separate	the	path	from	the	route,	and	navigation
guards	to	run	additional	logic	when	a	navigation	event	occurs.

	Many	static	site	hosts	have	an	SPA	mode	that	you	can	enable	to	do	this.	Check
that	out	before	worrying	about	server	configuration.
1

Chapter	6.	State	Management
with	Vuex

Until	this	point	in	the	book,	all	data	has	been	stored	in	our	components.	We	hit
an	API,	and	we	store	the	returned	data	on	the	data	object.	We	bind	a	form	to	an
object,	and	we	store	that	object	on	the	data	object.	All	communication	between
components	has	been	done	using	events	(to	go	from	child	to	parent)	and	props
(to	go	from	parent	to	child).	This	is	good	for	simple	cases,	but	in	more
complicated	applications,	it	won’t	suffice.

Let’s	take	a	social	network	app—specifically,	messages.	You	want	an	icon	in	the
top	navigation	to	display	the	number	of	messages	you	have,	and	then	you	want	a
messages	pop-up	at	the	bottom	of	the	page	that	will	also	tell	you	the	number	of
messages	you	have.	Both	components	are	nowhere	near	each	other	on	the	page,
so	linking	them	using	events	and	props	would	be	a	nightmare:	components	that
are	completely	unrelated	to	notifications	will	have	to	be	aware	of	the	events	to
pass	them	through.	The	alternative	is,	instead	of	linking	them	together	to	share
data,	you	could	make	separate	API	requests	from	each	component.	That	would
be	even	worse!	Each	component	would	update	at	different	times,	meaning	they
could	be	displaying	different	things,	and	the	page	would	be	making	more	API
requests	than	it	needed	to.

vuex	is	a	library	that	helps	developers	manage	their	application’s	state	in	Vue
applications.	It	provides	one	centralized	store	that	you	can	use	throughout	your
app	to	store	and	work	with	global	state,	and	gives	you	the	ability	to	validate	data
going	in	to	ensure	that	the	data	coming	out	again	is	predictable	and	correct.

Installation
You	can	use	vuex	via	a	CDN.	Just	add	the	following:

<script src="https://unpkg.com/vuex"></script>

Alternatively,	if	you’re	using	npm,	you	can	install	vuex	by	using	npm install
--save vuex.	If	you’re	using	a	bundler	such	as	webpack,	then	just	as	with	vue-
router,	you	have	to	call	Vue.use():

import Vue from 'vue';
import Vuex from 'vuex';

Vue.use(Vuex);

Then	you	need	to	set	up	your	store.	Let’s	create	the	following	file	and	save	it	as
store/index.js:

import Vuex from 'vuex';

export default new Vuex.Store({
 state: {}
});

For	now,	that’s	just	an	empty	store:	we’ll	add	to	it	throughout	the	chapter.

Then,	import	it	in	your	main	app	file	and	add	it	as	a	property	when	creating	the
Vue	instance:

import Vue from 'vue';
import store from './store';

new Vue({
 el: '#app',
 store,
 components: {
 App
 }
});

You’ve	now	added	the	store	to	your	app	and	you	can	access	it	using
this.$store.	Let’s	look	at	the	concepts	of	vuex	and	then	we’ll	look	at	what	you
can	do	with	this.$store.

Concept
As	mentioned	in	the	introduction	to	this	chapter,	vuex	can	be	required	when

complex	applications	require	more	than	one	component	to	share	state.

Let’s	take	a	simple	component	written	without	vuex	that	displays	the	number	of
messages	a	user	has	on	the	page:

const NotificationCount = {
 template: `<p>Messages: {{ messageCount }}</p>`,
 data: () => ({
 messageCount: 'loading'
 }),
 mounted() {
 const ws = new WebSocket('/api/messages');

 ws.addEventListener('message', (e) => {
 const data = JSON.parse(e.data);
 this.messageCount = data.messages.length;
 });
 }
};

It’s	pretty	simple.	It	opens	a	websocket	to	/api/messages,	and	then	when	the
server	sends	data	to	the	client—in	this	case,	when	the	socket	is	opened	(initial
message	count)	and	when	the	count	is	updated	(on	new	messages)—the
messages	sent	over	the	socket	are	counted	and	displayed	on	the	page.

NOTE
In	practice,	this	code	would	be	much	more	complicated:	there’s	no	authentication	on	the
websocket	in	this	example,	and	it	is	always	assumed	that	the	response	over	the	websocket	is
valid	JSON	with	a	messages	property	that	is	an	array,	when	realistically	it	probably	wouldn’t
be.	For	this	example,	this	simplistic	code	will	do	the	job.

We	run	into	problems	when	we	want	to	use	more	than	one	of	the
NotificationCount	components	on	the	same	page.	As	each	component	opens	a
websocket,	it	opens	unnecessary	duplicate	connections,	and	because	of	network
latency,	the	components	might	update	at	slightly	different	times.	To	fix	this,	we
can	move	the	websocket	logic	into	vuex.

Let’s	dive	right	in	with	an	example.	Our	component	will	become	this:

const NotificationCount = {

 template: `<p>Messages: {{ messageCount }}</p>`,
 computed: {
 messageCount() {
 return this.$store.state.messages.length;
 }
 }
 mounted() {
 this.$store.dispatch('getMessages');
 }
};

And	the	following	will	become	our	vuex	store:

let ws;

export default new Vuex.Store({
 state: {
 messages: [],
 },
 mutations: {
 setMessages(state, messages) {
 state.messages = messages;
 }
 },
 actions: {
 getMessages({ commit }) {
 if (ws) {
 return;
 }

 ws = new WebSocket('/api/messages');

 ws.addEventListener('message', (e) => {
 const data = JSON.parse(e.data);
 commit('setMessages', data.messages);
 });
 }
 }
});

Now,	every	notification	count	component	that	is	mounted	will	trigger
getMessages,	but	the	action	checks	whether	the	websocket	exists	and	opens	a
connection	only	if	there	isn’t	one	already	open.	Then	it	listens	to	the	socket,
committing	changes	to	the	state,	which	will	then	be	updated	in	the	notification
count	component	as	the	store	is	reactive—just	like	most	other	things	in	Vue.

When	the	socket	sends	down	something	new,	the	global	store	will	be	updated,
and	every	component	on	the	page	will	be	updated	at	the	same	time.

Throughout	the	rest	of	the	chapter,	I’ll	introduce	the	individual	concepts	you	saw
in	that	example—state,	mutations,	and	actions—and	explain	a	way	we	can
structure	our	vuex	modules	in	large	applications	to	avoid	having	one	large,
messy	file.

State	and	State	Helpers
First,	let’s	look	at	state.	State	indicates	how	data	is	stored	in	our	vuex	store.	It’s
like	one	big	object	that	we	can	access	from	anywhere	in	our	application—it’s	the
single	source	of	truth.

Let’s	take	a	simple	store	that	contains	only	a	number:

import Vuex from 'vuex';

export default new Vuex.Store({
 state: {
 messageCount: 10
 }
});

Now,	in	our	application,	we	can	access	the	messageCount	property	of	the	state
object	by	accessing	this.$store.state.messageCount.	This	is	a	bit	verbose,
so	generally	it’s	better	to	put	it	in	a	computed	property,	like	so:

const NotificationCount = {
 template: `<p>Messages: {{ messageCount }}</p>`,
 computed: {
 messageCount() {
 return this.$store.state.messageCount;
 }
 }
};

Now,	the	component	will	display	“Messages:	10”.

State	Helpers

Accessing	the	store	in	a	computed	property	is	fine	when	you’re	referring	to	only
a	couple	of	properties	of	the	store,	but	it	can	get	repetitive	if	you’re	referring	to
lots	of	them.	For	this	reason,	vuex	provides	a	mapState	helper	that	returns	an
object	of	functions	that	can	be	used	as	computed	properties.

Generally,	all	you	need	to	provide	is	an	array	of	strings:

import { mapState } from 'vuex';

const NotificationCount = {
 template: `<p>Messages: {{ messageCount }}</p>`,
 computed: mapState(['messageCount'])
};

That	does	the	same	as	the	code	example	before,	but	is	much	shorter.	If	we	have
more	properties	we	want	to	get	from	the	vuex	store,	we	can	simply	add	their
names	to	the	mapState	call.

The	preceding	mapState	call	is	short	for	the	following:

computed: mapState({
 messageCount: (state) => state.messageCount
})

The	mapState	function	takes	an	object	for	which	every	key	corresponds	to	a
computed	property.	If	it	is	given	a	function,	the	function	is	called	with	state	as
the	first	argument,	and	you	can	retrieve	the	value	you	want	from	it.	You	can	also
give	it	a	string	if	you’re	just	getting	a	property	from	the	state:

computed: mapState({
 messageCount: 'messageCount'
})

You’ve	just	looked	at	three	ways	of	getting	the	exact	same	value	from	the	store
and	making	it	available	as	the	exact	same	computed	property;	you	might	be
wondering	about	the	difference	between	them.

If	every	one	of	your	mappings	is	a	simple	mapping	from	the	same	computed
property	name	to	the	property	name	in	vuex—for	example,	messageCount
corresponds	to	state.messageCount—you	can	use	the	array	syntax

demonstrated	in	the	first	example.

If,	however,	any	of	the	properties	are	going	to	be	mapped	to	different	names	or
need	processing,	you	need	to	use	the	full	object	syntax.	Then	I’d	recommend
using	the	string	syntax	wherever	possible—it’s	a	lot	easier	to	read—and	the
function	syntax	whenever	you	need	to	do	processing.	For	example,	if	we	have	a
messages	property	of	the	state	that	stores	an	array	of	messages	and	we	want	the
length	as	messageCount,	we	can	do	the	following:

computed: mapState({
 messageCount: (state) => state.messages.length,
 somethingElse: 'somethingElse'
})

It	is,	of	course,	up	to	you	which	style	you	use.

If	using	the	full	function	syntax,	not	ES6	fat-arrow	functions,	you	can	also
access	the	component	as	this	to	combine	both	component	state	and	vuex	state:

computed: mapState({
 messageCount(state) {
 return state.messages.length + this.pendingMessages.length;
 }
})

TIP
In	the	previous	example,	we	mixed	vuex	state	and	local	state.	A	common	mistake	people	make
when	using	vuex	is	moving	all	their	application	state	into	vuex,	which	isn’t	something	you
want	to	do.	It’s	fine	to	still	use	local	state	and	best	to	combine	the	two:	application	state	shared
between	multiple	components	into	vuex,	and	simple	state	that’s	used	in	only	one	component	in
local	state.

Finally,	let’s	look	at	a	way	to	combine	mapState	with	your	existing	computed
properties.	As	it	returns	an	object,	if	you	have	any	existing	computed	properties,
you	need	a	way	to	merge	the	two	objects	together.	Luckily,	there’s	a	stage	3
ECMAScript	proposal	(meaning	that	it’s	a	candidate	for	inclusion	into
JavaScript)	which	can	help	us	here:	the	object	spread	operator.	It’s	like	the	array
spread	operator	in	ECMAScript	2015,	but	for	objects:

computed: {
 doubleFoo() {
 return this.foo * 2;
 },
 ...mapState({
 messageCount: (state) => state.messages.length,
 somethingElse: 'somethingElse'
 })
}

The	resulting	object	for	this	example	is	as	follows:

computed: {
 doubleFoo() {
 return this.foo * 2;
 },
 messageCount() {
 return this.$store.state.messages.length,
 },
 somethingElse() {
 return this.$store.state.somethingElse;
 }
}

Note	that	if	you	use	the	object	spread	operator,	you’ll	want	to	use	a	transpilation
tool	such	as	Babel	to	ensure	maximum	browser	support.

Getters
Sometimes	you	might	find	that	you’re	using	the	same	data	in	multiple
components	and	doing	the	same	processing	in	all	of	them,	resulting	in	duplicate
code.	For	example,	maybe	we’re	finding	ourselves	calculating	the	name	of	the
people	we	haven’t	read	messages	from	repeatedly:

computed: mapState({
 unreadFrom: (state) => state
 .filter((message) => !message.read)
 .map((message) => message.user.name)
})

That	might	be	fine	if	we’re	using	the	computed	property	only	once,	but	if	we’re
using	it	in	multiple	components,	that’s	a	lot	of	repetition.	If	the	API	schema

changes	(maybe	message.user.name	is	changed	to
message.sender.full_name),	then	we’ll	have	to	update	our	code	in	a	lot	of
places.

Luckily,	vuex	provides	us	with	getters,	which	allow	us	to	move	the	code	we’re
commonly	reusing	into	our	vuex	store	to	avoid	duplicating	it	elsewhere.

Let’s	look	at	how	we	might	move	the	code	from	the	preceding	example	into	our
vuex	store:

import Vuex from 'vuex';

export default new Vuex.Store({
 state: {
 messages: [...]
 },
 getters: {
 unreadFrom: (state) => state.messages
 .filter((message) => !message.read)
 .map((message) => message.user.name)
 }
});

Now	the	unreadFrom	getter	can	be	accessed	at	store.getters.unreadFrom:

computed: {
 unreadFrom() {
 return this.$store.getters.unreadFrom;
 }
}

Neat.	Getters	can	also	access	other	getters	by	using	their	second	argument.	For
example,	let’s	split	the	previous	getter	into	two	smaller	getters:

import Vuex from 'vuex';

export default new Vuex.Store({
 state: {
 messages: [...]
 },
 getters: {
 unread: (state) => state.filter((message) => !message.read),
 unreadFrom: (state, getters) => getters.unread
 .map((message) => message.user.name)

 }
});

Getter	Helpers
Just	as	with	state,	there	are	helpers	for	getter	methods	instead	of	typing
this.$store.getters	every	time.	It	works	similarly	to	mapState,	but	doesn’t
support	the	function	syntax.

There’s	an	array	syntax

computed: mapGetters(['unread', 'unreadFrom'])

that’s	the	equivalent	of	the	following:

computed: {
 unread() {
 return this.$store.getters.unread;
 },
 unreadFrom() {
 return this.$store.getters.unreadFrom;
 },
}

And	there’s	an	object	syntax

computed: mapGetters({
 unreadMessages: 'unread',
 unreadMessagesFrom: 'unreadFrom'
})

that	is	the	equivalent	of	the	following:

computed: {
 unreadMessages() {
 return this.$store.getters.unread;
 },
 unreadMessagesFrom() {
 return this.$store.getters.unreadFrom;
 },
}

Mutations
So	far	you’ve	looked	only	at	how	to	get	data	out	of	the	store,	not	at	how	to
modify	the	data.	You	can’t	just	modify	the	values	in	the	state	object	directly;	you
have	to	use	a	mutation	to	do	it.

A	mutation	is	a	function	that	synchronously	modifies	the	state	and	is	invoked	by
calling	store.commit()	with	the	name	of	the	mutation.

Now,	let’s	create	a	mutation	that	allows	us	to	add	a	message	to	the	end	of	the
array	of	messages:

import Vuex from 'vuex';

export default new Vuex.Store({
 state: {
 messages: []
 },
 mutations: {
 addMessage(state, newMessage) {
 state.messages.push(newMessage);
 }
 }
});

Then	to	add	a	message,	we	can	call	store.commit()	in	our	component:

const SendMessage = {
 template: '<form @submit="handleSubmit">...</form>',
 data: () => ({
 formData: { ... }
 }),
 methods: {
 handleSubmit() {
 this.$store.commit('addMessage', this.formData);
 }
 }
};

The	first	argument	of	the	commit	method	is	the	name	of	the	mutation,	and	the
second	is	an	optional	argument	known	as	the	payload.

The	method	also	supports	an	object	syntax:

this.$store.commit({
 type: 'addMessage',
 newMessage: this.formData
});

The	entire	object	will	be	the	payload,	so	the	mutation	would	have	to	change	to
push	payload.newMessage	instead	of	the	entire	payload.

Mutation	Helpers
Just	as	with	state	and	getters,	there’s	a	mapMutations	method	for	mutations	too.
It	has	the	exact	same	syntax	as	the	mapGetters	helper.

There’s	an	array	syntax

methods: mapMutations(['addMessage'])

that’s	the	equivalent	of	the	following:

methods: {
 addMessage(payload) {
 return this.$store.commit('addMessage', payload);
 },
}

As	you	can	see,	it	also	supports	payloads	(again,	optionally).

Plus,	there’s	an	object	syntax	if	you	want	the	names	of	the	methods	to	be
different	from	the	names	of	the	mutations:

methods: mapMutations({
 addNewMessage: 'addMessage'
})

That	is	the	equivalent	of	the	following:

methods: {
 addNewMessage(payload) {
 return this.$store.commit('addMessage', payload);
 },
}

Mutations	Must	Be	Synchronous
As	I	mentioned	before,	mutations	are	only	for	performing	synchronous	changes
to	the	state	object.	If	you	want	to	make	an	asynchronous	change,	you	need	to	use
an	action.

Actions
Finally,	we	have	actions.	You	can	make	only	synchronous	changes	with
mutations,	so	actions	are	used	for	making	asynchronous	changes.

Let’s	make	an	action	that	builds	on	the	state	and	mutations	you’ve	seen
previously.	The	action	will	call	the	server	by	using	the	fetch	API,	check
whether	there	are	new	messages,	and	push	any	new	messages	to	the	end	of	the
messages	array:

import Vuex from 'vuex';

export default new Vuex.Store({
 state: {
 messages: []
 },
 mutations: {
 addMessage(state, newMessage) {
 state.messages.push(newMessage);
 },
 addMessages(state, newMessages) {
 state.messages.push(...newMessages);
 }
 },
 actions: {
 getMessages(context) {
 fetch('/api/new-messages')
 .then((res) => res.json())
 .then((data) => {
 if (data.messages.length) {
 context.commit('addMessages', data.messages);
 }
 });
 }
 }
});

There	are	two	new	things	in	this	code	example:	first	an	addMessages	mutation,
which	is	similar	to	the	addMessage	mutation	but	can	add	more	than	one	message
at	once,	and	the	getMessages	action,	which	checks	the	server	for	new	messages,
and	if	there	are	any,	calls	the	addMessages	mutation	with	those	new	messages.

Then,	to	call	getMessages	in	our	component,	we	use	the	store.dispatch()
method.	Let’s	add	a	little	link	to	the	NotificationCount	component	to	update
the	message	count:

import { mapState } from 'vuex';

const NotificationCount = {
 template: `<p>
 Messages: {{ messages.length }}
 <a @click.prevent="handleUpdate">(update)
 </p>`,
 computed: mapState(['messages']),
 methods: {
 handleUpdate() {
 this.$store.dispatch('getMessages');
 }
 }
};

Now,	clicking	the	link	results	in	the	following	process:

1.	 When	the	link	is	clicked,	the	handleUpdate	method	is	fired.

2.	 The	getMessages	action	is	dispatched.

3.	 A	request	is	sent	to	/api/new-messages.

4.	 When	that	request	returns,	if	it	has	new	messages,	the	addMessages
mutation	will	be	called	with	the	new	messages	as	a	payload.

5.	 The	addMessages	mutation	pushes	the	new	messages	to	the	messages
property	of	the	state.

6.	 Because	the	state	is	reactive,	the	messages	computed	property	updates,
and	the	text	display	on	the	page	changes.

dispatch	takes	the	same	syntax	as	commit:	it	can	either	have	the	name	of	the

action	as	the	first	argument	and	the	payload	as	the	second	argument,	or	it	can
take	an	object	with	a	type	property,	which	will	also	be	used	as	the	payload.

Action	Helpers
As	with	everything	else	covered	so	far	in	this	chapter,	actions	have	a
mapActions	helper	that	you	can	use	to	map	methods	to	actions:

methods: {
 // Maps this.getMessage() to this.$store.dispatch('getMessage')
 ...mapActions(['getMessage'])

 // Maps this.update() to this.$store.dispatch('getMessages')
 ...mapActions({
 update: 'getMessages'
 })
}

Destructuring
It’s	fairly	standard	in	actions	to	use	destructuring	in	the	arguments	instead	of
referring	to	context,	like	so:

actions: {
 getMessages({ commit }) {
 // Do some stuff, then…
 commit('addMessages', data.messages);
 }
}

context	equals	the	vuex	store—or,	as	you’re	about	to	explore	in	the	next	section
—the	current	vuex	module.	You	can	access	the	state	through	it	(it’s	just	the
state	property),	but	you	can’t	mutate	it—you	need	to	use	mutations	for	that.

Promises	and	Actions
Actions	are	asynchronous,	so	how	do	we	know	when	they’re	finished?	We	could
watch	the	computed	property	for	changes,	but	that	isn’t	ideal.

Instead,	we	can	return	a	promise	inside	the	action.	Then,	the	call	to	dispatch

will	also	return	a	promise,	which	we	can	use	to	run	code	when	the	action	has
finished	running.

Let’s	change	our	previous	getMessages	action	so	that	it	returns	a	promise:

actions: {
 getMessages({ commit }) {
 return fetch('/api/new-messages')
 .then((res) => res.json())
 .then((data) => {
 if (data.messages.length) {
 commit('addMessages', data.messages);
 }
 });
 }
}

It’s	a	small	change—just	a	return	keyword	before	the	fetch	call.	Now,	let’s
change	our	NotificationCount	component	to	display	a	loading	sign	when	the
message	count	is	being	updated.	To	do	that,	we’ll	need	to	add	an	updating
property	to	the	local	state	of	the	component	that	will	equal	true	or	false:

import { mapState } from 'vuex';

const NotificationCount = {
 template: `<p>
 Messages: {{ messages.length }}
 (updating…)
 <a v-else @click.prevent="handleUpdate">(update)
 </p>`,
 data: () => ({
 updating: false,
 }),
 computed: mapState(['messages']),
 methods: {
 handleUpdate() {
 this.updating = true;
 this.$store.dispatch('getMessages')
 .then(() => {
 this.updating = false;
 });
 }
 }
};

Now,	when	the	component	is	updating,	the	component	displays	(updating…)
instead	of	the	link	to	update	the	message	count.

Modules
Now	that	you	know	how	to	store	and	manipulate	data	in	a	vuex	store,	let’s	talk	a
bit	about	how	to	structure	your	store.

In	smaller	apps,	the	way	you’ve	seen	so	far—keeping	all	of	your	state,	getters,
mutations,	and	actions	in	one	file—works	great.	In	larger	applications,	however,
that	can	get	a	bit	messy,	so	vuex	allows	you	to	split	your	store	into	modules.

Each	module	is	just	an	object,	and	has	its	own	state,	getters,	mutations,	and
actions,	and	is	then	added	to	the	store	by	using	the	modules	property.	Let’s	take
our	previous	store	and	split	out	the	messages	logic	(so,	all	of	it)	into	a	module:

import Vuex from 'vuex';

const messages = {
 state: {
 messages: []
 },
 mutations: {
 addMessage(state, newMessage) {
 state.messages.push(newMessage);
 },
 addMessages(state, newMessages) {
 state.messages.push(...newMessages);
 }
 },
 actions: {
 return getMessages({ commit }) {
 fetch('/api/new-messages')
 .then((res) => res.json())
 .then((data) => {
 if (data.messages.length) {
 commit('addMessages', data.messages);
 }
 });
 }
 }
};

export default new Vuex.Store({

 modules: {
 messages,
 }
});

After	this	modification,	a	couple	of	subtle	changes	occur	in	the	way	it	works
now.

The	first	one	is	that	state	in	the	mutation	and	getters	now	refers	to	the	module
state	instead	of	the	root	state	(the	state	of	the	main	store),	and	context	in	the
actions	refers	to	the	module	instead	of	the	store.	Everything	you	do	in	that
module	affects	only	that	module,	and	not	any	other	modules.	In	getters,	you	can
access	the	root	scope	by	using	the	third	rootScope	property,	and	in	actions	you
can	access	the	root	scope	by	using	the	rootScope	property	of	the	scope	object.

The	second	change	is	that	you	now	need	to	specify	the	module	when	retrieving
data	from	the	store.	You	now	need	to	access	state.messages.messages
(instead	of	state.messages),	where	the	first	messages	is	the	name	of	the
namespace,	and	the	second	is	the	name	of	the	property	in	the	state.

We	don’t	need	to	worry	about	the	first	change	in	this	case—everything	still
works	as	expected—but	the	second	change	requires	us	to	make	a	change	to	the
mapState	call	in	the	NotificationCount	component.	We	can	just	add	the	name
of	the	module	as	the	first	argument:

computed: mapState('messages', ['messages'])

This	does	mean	that	if	you’re	getting	state	from	more	than	one	module,	you’ll
have	to	call	mapState	multiple	times,	but	with	the	object	spread	operator,	that’s
not	a	big	issue.

File	Structure
Generally,	I	like	to	split	each	module	into	its	own	file.	This	makes	the	code	a	bit
neater	and	more	organized,	and	also	means	that	the	ES6	export	syntax	can	be
used	to	make	the	module	itself	really	clean.	Let’s	move	the	messages	code	into
its	own	file,	saved	in	store/modules/messages.js:

export const state = {

 messages: []
};

export const mutations = {
 addMessage(state, newMessage) {
 state.messages.push(newMessage);
 },
 addMessages(state, newMessages) {
 state.messages.push(...newMessages);
 }
};

export const actions = {
 return getMessages({ commit }) {
 fetch('/api/new-messages')
 .then((res) => res.json())
 .then((data) => {
 if (data.messages.length) {
 commit('addMessages', data.messages);
 }
 });
 }
};

You	can	then	import	it	in	store/index.js	as	follows:

import Vuex from 'vuex';
import * as messages from './modules/messages';

export default new Vuex.Store({
 modules: {
 messages,
 }
});

You	can,	of	course,	keep	the	module	as	one	object	and	a	default	export	(that’s
how	it	is	in	the	official	documentation);	I	just	find	it	a	bit	nicer	this	way.

Namespaced	Modules
By	default,	only	the	state	of	a	vuex	module	is	namespaced.	Getters,	mutations,
and	actions	are	still	called	in	exactly	the	same	way,	and	if	an	action	is	dispatched
that	exists	in	multiple	modules,	it’s	run	on	all	the	modules	it’s	found	on.	This	can
be	useful	sometimes,	but	it	could	potentially	be	an	accident.	It’s	possible	to

namespace	the	entire	module	to	prevent	this	from	happening.

To	tell	vuex	to	namespace	the	module,	add	a	namespaced: true	property	to	the
object—or	in	the	case	of	our	previous	example	in	its	own	file,	add	the	following:

export const namespaced = true;

Now	to	access	getters,	specify	the	namespace	name	in	the	string	before	their
name:

computed: {
 unreadFrom() {
 return this.$store.getters['messages/unreadFrom'];
 }
}

To	trigger	mutations	and	dispatch	actions,	do	the	same	again—specify	the
namespace	name	in	the	string	before	their	name:

store.commit('messages/addMessage', newMessage);

store.dispatch('messages/getMessages');

Just	as	with	mapState,	the	other	three	helpers—mapGetters,	mapMutations,
and	mapActions—accept	the	name	of	the	module	as	the	first	argument.

Let’s	take	a	look	at	what	namespacing	the	module	does	to	our
NotificationCount	component:

import { mapState } from 'vuex';

const NotificationCount = {
 template: `<p>
 Messages: {{ messages.length }}
 (updating…)
 <a v-else @click.prevent="handleUpdate">(update)
 </p>`,
 data: () => ({
 updating: false,
 }),
 computed: mapState('messages', ['messages']),
 methods: {
 handleUpdate() {

 this.updating = true;
 this.$store.dispatch('messages/getMessages')
 .then(() => {
 this.updating = false;
 });
 }
 }
};

Nothing	huge	has	changed,	but	it’s	now	clear	that	the	module	is	namespaced.

Summary
In	this	chapter,	you	looked	at	using	vuex	to	manage	complicated	application
state	and	the	various	concepts	of	vuex:

The	vuex	store	is	where	everything—state,	getters,	mutations,	and
actions—are	stored	and	accessed	through.

State	is	the	object	where	all	your	data	is	stored.

Getters	allow	you	to	store	common	logic	used	to	retrieve	data	from	the
store.

Mutations	are	used	to	synchronously	change	data	in	the	store.

Actions	are	used	to	asynchronously	change	data	in	the	store.

State,	getters,	mutations,	and	actions	also	have	helpers	to	help	you	add	them	to
your	components,	named	mapState,	mapGetters,	mapMutations,	and
mapActions,	respectively.

Finally,	you	also	looked	at	using	modules	to	divide	your	vuex	store	into	logical
chunks.

Chapter	7.	Testing	Vue
Components

By	separating	our	code	into	components,	we’ve	made	it	easy	to	write	unit	tests
for	our	app.	Our	code	has	been	divided	into	small	chunks	that	serve	one	purpose
each,	with	a	relatively	small	number	of	options—perfect	for	testing.	Testing	your
code	ensures	that	when	you	make	changes	in	the	future,	you	won’t	break	things
that	you	weren’t	expecting	to	have	changed.	If	you’re	working	on	any
reasonably	sized	app,	you	should	probably	be	writing	tests.

In	this	chapter,	we’ll	first	look	at	testing	your	components	using	just	Vue,	and
then	we’ll	look	at	using	vue-test-utils	to	make	the	syntax	a	bit	nicer.

We	won’t	be	looking	at	a	test	framework	such	as	Jasmine,	Mocha,	or	Jest	in	this
book.	The	most	the	tests	written	in	this	chapter	will	do	is	throw	an	error	that	can
then	be	inspected	in	the	browser	console.	For	a	more	in-depth	look	at	testing	in
JavaScript,	check	out	JavaScript	Testing	with	Jasmine	by	Evan	Hahn	(O’Reilly),
or	any	number	of	articles	online.

Testing	a	Simple	Component
Let’s	start	by	looking	at	a	simple	component	that	we	can	test—a	simpler	version
of	the	NotificationCount	component	you	saw	in	the	previous	chapter:

const NotificationCount = {
 template: `<p>
 Messages: {{ messageCount }}
 <a @click.prevent="handleUpdate">(update)
 </p>`,
 props: {
 initialCount: {
 type: Number,
 default: 0
 }
 },
 data() {
 return { messageCount: this.initialCount };

http://oreil.ly/ZEgmw9

 },
 methods: {
 handleUpdate() {
 this.$http.get('/api/new-messages')
 .then((data) => {
 this.messageCount += data.messages.length;
 });
 }
 }
};

The	component	initially	displays	the	notification	count	given	in	the
initialCount	prop,	and	then	calls	an	API	to	update	the	number	whenever	the
update	link	is	pressed.

But	what	could	we	test?	I	can	see	three	things	that	we	could	write	tests	for:

We	could	test	that	the	provided	initial	count	displays	correctly.

There	could	be	a	test	to	ensure	that	when	the	update	link	is	clicked,	the
count	updates	correctly.

Finally,	there	could	be	a	test	to	make	sure	that	the	component	gracefully
handles	failure	from	the	API	(it	currently	doesn’t).

For	now,	let’s	not	worry	about	testing	the	update	functionality	and	just	look	at
the	initial	count.

To	test	the	NotificationCount	component,	we	can	create	a	new	Vue	instance
in	which	NotificationCount	is	the	only	child:

const vm = new Vue({
 template: '<NotificationCount :initial-count="5" />',
 components: { NotificationCount }
}).$mount();

Because	we	didn’t	provide	new Vue()	with	an	el	property,	we	need	to	call
.$mount()	manually	so	that	Vue	starts	the	mounting	process.	Otherwise,	we
can’t	test	our	component	properly.

TIP

vm	is	short	for	ViewModel,	and	is	commonly	used	throughout	this	book,	the	vue-test-utils
documentation,	and	the	Vue.js	documentation	itself.

If	you	log	vm	to	the	console,	you	can	see	that	it	is	an	object	with	a	ton	of
properties.	The	one	we	care	about	right	now	is	the	$el	property,	which	is	the
element	generated	by	Vue.

Logging	vm.$el.outerHTML	to	the	console	results	in	the	following:

<p>
 Messages: 5
 <a>(update)</p>

We	can	see	that	the	initial	count	has	displayed	properly,	but	let’s	write	some	code
that	throws	an	error	if	it	hasn’t	so	that	we	don’t	have	to	check	the	HTML
manually	every	time.	vm.$el	is	a	standard	DOM	node,	so	we	can	use
.querySelector()	on	it	to	find	the	.count	span:

const count = vm.$el.querySelector('.count').innerHTML;

if (count !== '5') {
 thrown new Error('Expected count to equal "5"');
}

If	we	add	an	assertion	library	such	as	Chai,	we	can	simplify	the	second	part	into
something	you’re	probably	more	familiar	with	if	you	have	written	tests	before:

const count = vm.$el.querySelector('.count').innerHTML;
expect(count).toBe('5');

If	the	displayed	count	is	anything	other	than	5	now,	an	error	will	be	thrown,	and
the	test	will	fail.

Introducing	vue-test-utils
The	syntax	in	the	preceding	example	is	a	bit	more	verbose	than	it	needs	to	be,
and	that	is	just	a	simple	example.	With	more	complicated	examples	involving
events	and	mocked	components,	you	almost	end	up	writing	more	code	to	test	a

component	than	is	in	the	component	itself!

vue-test-utils	is	an	official	Vue	library	to	assist	you	writing	tests.	It	provides
functionality	to	perform	the	repetitive	parts	of	writing	Vue	components	such	as
querying	the	DOM,	setting	props	and	data,	mocking	components	and	other
properties,	and	working	with	events.

It	doesn’t	help	you	with	testing	running	(for	that,	use	a	library	such	as	Jest	or
Mocha)	or	assertions	(for	that,	try	Chai	or	Should.js),	so	you’ll	need	to	install
them	separately.	I	don’t	cover	test	runners	in	this	chapter.	I’ll	just	write	some
code	that	will	throw	an	error	if	the	test	fails	and	assume	that	there	will	be
something	to	catch	the	error.

To	install	vue-test-utils,	you	can	use	unpckg	or	another	CDN	as	with	the	other
libraries,	but	generally	you’re	going	to	want	to	install	it	from	npm:

$ npm install --save-dev vue-test-utils

Now,	in	your	test	file,	you	can	import	vue-test-utils	and	rewrite	the	test	as
follows:

import { mount } from 'vue-test-utils'

const wrapper = mount(NotificationCount, {
 propsData: {
 initialCount: 5
 }
});

const count = wrapper.find('.count').text();
expect(count).toBe('5');

Although	this	code	isn’t	any	shorter—in	fact,	it’s	pretty	much	the	same	length—
it’s	much	easier	to	read.	Larger	examples	are	often	significantly	shorter	when
written	using	vue-test-utils	too.

Querying	the	DOM
In	the	previous	example,	you	saw	the	following	expression:

wrapper.find('.count').text()

But	what	is	that	doing?

First,	let’s	go	back	to	the	mount()	function.	This	function	takes	the	component
and	some	options—in	this	case,	just	props	data—and	returns	a	wrapper,	which	is
an	object	provided	by	vue-test-utils	that	wraps	a	mounted	component	and	allows
us	to	run	operations	on	and	query	the	component	without	having	to	use	the
browser’s	native	DOM	methods	too	much.

One	of	the	methods	provided	by	the	wrapper	is	the	.find()	method,	which
when	provided	with	a	selector	will	query	the	element	that	corresponds	to	the
wrapped	element	and	finds	the	first	element	in	the	DOM	that	matches	that
selector.	Basically,	it’s	the	equivalent	of	.querySelector()	on	a	DOM	element.
After	.find()	has	located	the	element,	it	returns	that	element	wrapped	in
another	wrapper—not	the	element	itself.

WARNING
Note	that	.find()	returns	only	the	first	element	matching	the	selector.	If	you	want	more	than
one,	use	.findAll().	This	returns	a	WrapperArray	object,	not	a	Wrapper,	but	it	has	similar
methods,	with	the	addition	of	an	.at()	method	to	return	just	the	element	at	the	given	index	in
a	wrapper.

Now	that	we	have	the	.count	span	in	a	wrapper,	we	need	another	method	to
read	the	contents	of	the	element	to	test	what	it	is	equal	to.	There	are	two	methods
we	could	use	for	this,	.html()	and	.text(),	but	it’s	generally	better	to	use
.text()	where	possible	so	we’ll	use	that	here.

We	now	have	the	contents	of	the	.count	span	stored	in	a	variable	and	can	test	it
by	using	whatever	method	we	prefer.

You	can	use	quite	a	few	functions	to	query	the	DOM,	and	they	will	probably
have	changed	or	been	added	to	by	the	time	you	read	this	book,	so	there’s	no
point	covering	them	all	here;	go	check	out	the	documentation!

mount()	Options
You	saw	that	we	can	provide	an	object	as	the	second	argument	to	mount()	and
tell	Vue	what	props	we	want	the	component	to	have	with	it,	but	there’s	a	lot
more	we	can	do	with	it.	You	can	see	a	full	list	in	the	Vue.js	and	vue-test-utils
documentation,	but	here	are	a	few	of	the	most	useful:

propsData	(as	you	saw	before)	is	used	to	pass	props	to	our	component:

const wrapper = mount(NotificationCount, {
 propsData: {
 initialCount: 5
 }
});

slots	is	used	to	pass	components	or	HTML	strings	to	the	component.	Let’s
mount	our	blog	post	component	from	the	“Named	Slots”:

const wrapper = mount(BlogPost, {
 slots: {
 default: BlogContentComponent,
 header: '<h2>Blog post title</h2>'
 },
 propsData: {
 author: blogAuthor
 }
});

mocks	is	used	to	add	properties	to	the	instance.	For	example,	in	the	first	example
in	this	chapter,	we	used	this.$http.get()	to	send	an	HTTP	request.	Let’s
create	a	mock	for	that	API:

const wrapper = mount(NotificationsCount, {
 mocks: {
 $http: {
 get() {
 return Promise.resolve({ messageCount: 2 });
 }
 }
 },
 propsData: {
 initialCount: 0
 }

});

Now	instead	of	calling	an	actual	API	(which	would	be	brittle	and	far	too	slow
for	unit	tests),	calling	this.$http.get('/api/new-messages')	will	return	a
promise	that	resolves	immediately.

listeners	is	an	object	containing	functions	to	be	used	as	event	listeners.	Often
you	don’t	need	to	use	this	option,	as	the	emitted	property	of	the	wrapper	object
will	suffice,	but	we’ll	explore	that	in	“Working	with	Events”:

const wrapper = mount(Counter, {
 listeners: {
 count(clicks) {
 console.log(`Clicked ${clicks} times`);
 }
 }
});

stubs	is	similar	to	mocks,	but	instead	of	mocking	variables,	you	can	use	it	to
stub	components:

const wrapper = mount(TheSidebar, {
 stubs: {
 'sidebar-content': FakeSidebarContent
 }
});

As	I	said,	those	are	just	some	of	the	options	I’ve	found	most	useful:	more	are
covered	in	the	official	documentation.

Mocking	and	Stubbing	Data
The	previous	section	briefly	covered	the	mocks	option,	which	allows	you	to	add
properties	to	the	instance	to	mock	functionality	that	has	been	added	to	Vue.fn	to
make	it	accessible	everywhere	in	your	Vue	instance.	We	also	covered	the	stubs
option,	which	allows	you	to	put	in	a	fake	component	or	HTML	instead	of	having
to	depend	on	another	real	component	in	your	tests.	Both	options	reduce	the
complexity	of	your	tests	by	reducing	the	number	of	moving	parts	that	your
component	is	depending	on;	if	you	break	one	component,	you	ideally	don’t	want

all	the	tests	for	components	depending	on	that	component	to	start	failing	as	well!

There	are	also	four	.set*()	methods	you	can	use	to	set	the	props,	data,
computed	properties,	and	methods	of	a	component.	.setComputed()	and
.setMethods()	are	great	methods	for	overriding	computed	properties	and
methods,	possibly	simplifying	what	you	need	to	mock	that	the	method	would
have	called	later.

Instead	of	overriding	the	this.$http.get()	function	on	the
NotificationsCount	method,	for	example,	we	could	have	overridden	the	entire
handleUpdate	method	to	increase	the	message	count	by	two:

const wrapper = mount(NotificationsCount, {
 propsData: {
 initialCount: 0
 }
});

wrapper.setMethods({
 handleUpdate() {
 this.messageCount += 2;
 }
});

Be	careful	when	doing	this—it	can	make	your	tests	quite	brittle—but	when
applied	carefully,	it	can	be	a	super	useful	feature.

setComputed()	behaves	similarly,	but	you	give	it	a	specific	value,	not	a
function:

const wrapper = mount(NumberTotal);

wrapper.setComputed({
 numberTotal: 16
});

Working	with	Events
Finally,	vue-test-utils	contains	functionality	that	makes	it	easier	for	you	to	work
with	events.	This	is	where	I	find	vue-test-utils	most	useful:	this	isn’t	that	trivial
without	the	library.

First,	let’s	take	a	look	at	how	to	trigger	events	on	a	component.	Remember	that
our	NotificationCount	component	had	a	link	to	update	the	message	count:
let’s	write	a	test	that	clicks	that	link	and	then	checks	that	the	event	has	been
triggered.

To	test	whether	the	link	has	been	clicked,	let’s	mock	this.$http	with	a	method
that	returns	a	promise	(as	before),	but	also	sets	a	variable	to	true	to	show	that	it
has	been	called:

let clicked = false;

const wrapper = mount(NotificationsCount, {
 mocks: {
 $http: {
 get() {
 clicked = true;
 return Promise.resolve({ messageCount: 1 });
 }
 }
 },
 propsData: {
 initialCount: 2
 }
});

Now,	when	the	update	is	triggered,	clicked	should	be	changed	to	true.

Wrapper	objects	have	a	.trigger()	method	we	can	use	to	trigger	a	click	event:

wrapper.find('a').trigger('click');

Now,	we	can	test	that	clicked	is	true—if	it	isn’t,	the	test	should	fail:

expect(clicked).toBe(true);

Finally,	let’s	look	at	how	we	can	see	which	custom	events	have	been	fired	by
components.	Every	wrapper	object	stores	all	the	events	that	have	been	emitted
on	it,	and	you	can	access	it	by	using	the	.emitted()	method.	This	is	super
useful	and	means	that	you	don’t	have	to	worry	about	adding	event	listeners:
they’re	all	already	being	captured!

In	“Custom	Events”,	you	met	a	component	called	Counter	that	emits	a	count
event	containing	the	number	of	times	it	has	been	clicked	every	time	it	is	clicked.
Let’s	write	a	test	to	check	whether	the	number	is	accurate:

const wrapper = mount(Counter);

// Click three times
wrapper.find('button').trigger('click');
wrapper.find('button').trigger('click');
wrapper.find('button').trigger('click');

const emitted = wrapper.emitted();

expect(emitted.count).toBeTruthy();
expect(emitted.count.length).toBe(3);

expect(emitted.count[0]).toBe(1);
expect(emitted.count[1]).toBe(2);
expect(emitted.count[2]).toBe(3);

We	can	see	not	only	what	events	have	been	emitted,	but	also	the	payload	that
was	emitted	with	them	and	the	order	they	were	emitted	in.	This	is	useful	when
debugging	components	that	emit	events.

An	emittedByOrder()	method	behaves	similarly	but	contains	an	array	instead,
so	that	you	can	see	the	order	in	which	all	the	events	were	fired,	not	just	the
events	with	the	same	name.

Summary
In	this	final	chapter,	you	looked	at	how	to	take	everything	you’ve	learned	about
Vue	components	so	far	in	this	book	and	write	unit	tests	for	them	using	another
official	Vue	library	called	vue-test-utils.	The	library	wraps	your	Vue	components
and	provides	useful	methods	that	allow	you	to	stub	and	mock	components,
libraries,.	and	properties,	pass	in	mock	data	and	props,	access	and	manipulate
properties	of	the	generated	elements,	and	trigger	and	capture	events.

Appendix	A.	Bootstrapping	Vue

Setting	up	Vue	from	scratch	with	a	build	tool,	tests,	and	all	the	libraries	required
to	write	a	large	application	can	be	an	educational	experience	that	everyone
should	attempt	once.	However,	realistically,	it	can	be	a	pain	and	is	probably	not
something	you	want	to	do	every	time	you	set	up	Vue.	You	can	set	up	a	fully
functional	Vue	install	in	numerous	ways	without	having	to	set	it	up	yourself,	and
this	short	appendix	covers	some	of	them.

vue-cli
vue-cli	enables	you	to	quickly	bootstrap	Vue	applications	from	various
provided	templates.	I	used	to	set	up	pretty	much	every	Vue	project	I	work	on.

To	install	vue-cli:

$ npm install --global vue-cli

Then,	pick	the	template	that	you	want	to	install	and	run	npm init [template
name].	For	example,	to	use	the	webpack	template,	run	the	following:

$ vue init webpack

You’ll	then	be	presented	with	a	setup	wizard,	which	asks	a	series	of	questions
such	as	where	you	want	to	set	up	your	project,	what	libraries	you	want	to	be
installed,	and	some	npm	setup	information.

Depending	on	what	template	you	choose,	it’ll	look	something	like	this:

Once	you’ve	installed	the	dependencies	of	your	new	project,	you	can	run	the
startup	command	it	gives	you	(for	the	webpack	template,	it’s	npm run dev),	and
you’ll	be	able	to	dive	in	with	a	fully	setup	application	that	requires	very	little
configuration	to	get	to	where	you	want	it.

Several	officially	provided	templates	are	available	for	Vue.	They’re	all	stored	on
the	vuejs-templates	organization	on	GitHub.	Presented	in	order	based	on	the
number	of	GitHub	stars,	the	six	available	templates	at	the	time	of	writing	are
described	in	the	following	sections.

webpack
The	webpack	template	is	the	most	starred	on	GitHub,	and	from	what	I’ve	seen
also	the	most	commonly	used.	It	provides	a	fully	featured	webpack	setup	with
vue-loader	for	single-file	components	(.vue	files),	hot	module	reloading,	and
linting,	and	can	set	you	up	with	vue-router,	unit	tests,	and	functional	tests	if	you
want	them.

pwa

This	template	is	based	on	the	webpack	template	and	does	everything	it	does,	but
also	sets	up	your	application	to	be	used	as	a	progressive	web	application—a	web
app	that	is	available	offline	and	is	designed	to	be	saved	to	the	home	screen	of	a
user’s	mobile	device.

webpack-simple
This	template	is	like	the	webpack	template,	but	simpler.	It	provides	only	a
simple	webpack	setup	with	vue-loader	and	other	essential	loaders,	but	doesn’t
set	up	anything	like	hot	module	reloading,	linting,	or	any	of	the	optional
modules	the	webpack	template	installs.

I	do	not	recommend	using	this	template.	If	you	want	a	simpler	setup,	use	the
webpack	template	and	select	“No”	for	all	the	options	you	don’t	want.	This
template	isn’t	designed	for	production	usage,	so	if	you	decide	that	you	want	to
use	the	project	as	more	than	a	prototype,	you’ll	have	to	redo	your	webpack
setup.

simple
The	simple	template	contains	just	an	HTML	file	and	a	CSS	file.	It’s	super
simple,	and	great	for	when	a	build	system	is	overkill.

browserify
The	browserify	template	provides	a	fully	featured	Browserify	setup.	It	provides
you	with	vueify	to	use	single-file	components	with	Browserify,	hot	module
reloading,	and	linting,	and	optionally	vue-router,	unit	tests,	and	functional	tests.

browserify-simple
Much	like	webpack-simple,	this	is	a	minimal	version	of	the	browserify	template.

Your	Own	Template
It’s	also	possible	to	make	your	own	template.	If	none	of	the	templates	work	for
you	or	you	find	yourself	making	the	same	changes	every	time	you	use	one	of	the
provided	templates	(for	example,	I	always	find	myself	adding	semicolons	to	the

build	files	of	the	webpack	template),	this	might	be	best	for	you.	You	can	either
fork	one	of	the	existing	templates	or	start	completely	from	scratch;	the
documentation	for	vue-cli	explains	how	you	can	do	this.

Nuxt.js
As	an	alternative	to	vue-cli,	you	can	use	Nuxt.js	to	set	up	your	Vue	applications.
It	allows	you	to	create	a	client-side	application	while	abstracting	away	all	the
configuration.	It	sets	up	Vue,	vue-router,	vuex,	vue-meta	(used	for	easily	setting
stuff	such	as	page	titles),	with	webpack	and	Babel.	It	also	sets	up	server-side
rendering,	automatic	code	splitting,	CSS	preprocessing,	static	file	serving,	and	a
ton	of	other	useful	features.

Appendix	B.	Vue	from	React

If	you’ve	used	React	before,	you’re	probably	already	familiar	with	a	lot	of	the
concepts	in	Vue.	I’ve	compiled	a	list	of	some	of	the	similarities	and	differences
between	the	two	frameworks	in	this	appendix.	This	section	is	fairly	heavily
example	based:	it’s	a	lot	easier	to	understand	the	differences	and	similarities
from	examples	than	from	me	writing	about	it!

Getting	Started
Both	Vue	and	React	have	similar	tools	that	you	can	use	to	set	up	a	simple	app.
React	has	create-react-app,	which	sets	up	a	webpack	configuration	to	build	a
React	app	and	then	hides	the	configuration	from	you.	Vue	has	vue-cli,	which	has
various	templates	that	you	can	use	to	install	Vue	with	webpack,	Browserify,	or
without	any	build	tool	at	all.	The	vue-cli	templates	are	also	configurable	and	will
set	up	vue-router,	unit	testing,	and	functional	testing	(but	not	vuex)	if	you	want	it
to—something	that	create-react-app	will	not	provide.

You	can	also	build	your	own	templates	to	use	with	vue-cli.	Check	out
Appendix	A	for	more	information	on	vue-cli	and	the	templates	available	to	you.

There’s	also	a	difference	in	setup	when	you	want	just	a	simple	setup.	React
doesn’t	work	great	without	a	build	tool,	because	you	can’t	write	JSX	without	a
parser;	it’s	not	supported	in	the	browser.	Nearly	every	React	project	uses
webpack,	and	Browserify	support	is	limited.	Vue	doesn’t	require	JSX	(although
you	can	use	it	if	you	want	it),	so	it’s	possible	to	use	it	in	the	browser	without	a
build	tool.	Most	projects	don’t	do	this,	as	having	a	module	bundler	and	an
ES2015	transpiler	is	generally	required	in	all	projects,	but	it’s	nice	to	have	the
option.	It’s	also	great	for	beginners,	as	you	can	start	writing	Vue	without	having
to	worry	about	a	complicated	build	setup.

Similarities
Many	similarities	exist	between	React	and	Vue.	Vue	was	designed	to	take	the

best	bits	of	Angular	and	React	and	combine	them,	so	if	there’s	a	thing	you	really
like	about	React,	chances	are	you’ll	be	able	to	find	it	in	Vue	too.	This	section
explains	and	demonstrates	some	of	the	similarities.

Components
Both	React	and	Vue	are	heavily	component-driven.	Using	components	is	a	great
way	of	working:	it	allows	you	to	split	your	application	into	sensible,	reusable
chunks	that	are	each	responsible	for	a	distinct	part	of	your	application.	This
makes	them	easy	to	test	too.	Every	component	in	both	React	and	Vue	has	its	own
state:	in	React,	it’s	called	state	and	stored	using	the	setState()	method,	and	in
Vue,	it’s	called	data,	and	is	stored	by	mutating	the	data	object.	You	can	also	pass
data	into	components,	which	is	done	basically	the	same	way	in	both	libraries	and
called	props.	The	syntax	is	slightly	different,	but	that	is	covered	in
“Differences”.

Let’s	demonstrate	with	a	simple	component	that	accepts	a	user	ID	as	a	prop,	and
then	makes	an	API	request	and	displays	the	resulting	user	data	on	the	page.

Here’s	the	component	in	React:

class UserView extends React.Component {
 constructor(props) {
 super(props);

 this.state = {
 user: undefined
 };

 fetch(`/api/user/${this.props.userId}`)
 .then((res) => res.json())
 .then((user) => {
 this.setState({ user });
 });
 },
 render() {
 const user = this.state.user;

 return (
 <div>
 { user ? (
 <p>User name: {user.name}</p>
) : (

 <p>Loading…</p>
) }
 </div>
);
 }
};

UserView.propTypes = {
 userId: PropTypes.number
};

And	here	it	is	in	Vue:

const UserView = {
 template: `
 <div>
 <p v-if="user">User name: {{ user.name }}</p>
 <p v-else>Loading...</p>
 </div>`,
 props: {
 userId: {
 type: Number,
 required: true
 }
 },
 data: () => ({
 user: undefined
 },
 mounted() {
 fetch(`/api/user/${this.userId}`)
 .then((res) => res.json())
 .then((user) => {
 this.user = user;
 });
 }
};

Both	components	are	called	in	similar	ways.

In	React:

<UserGuide userId={10} />

And	in	Vue:

<UserGuide :userId="10" />

Both	React	and	Vue	have	one-way	data	flow.	You	can	pass	data	into	components
using	props,	but	you	cannot	modify	props	directly.

Reactivity
Both	React	and	Vue	have	similar	reactivity	mechanisms.	Reactivity	was	one	of
the	best	things	about	React,	so	it’s	great	that	Vue	has	it	too!

When	you	update	the	state	in	React	or	the	data	in	Vue,	or	when	a	prop	or	one	of
any	of	the	things	the	library	is	watching	changes,	everything	that	depends	on	that
value	is	updated.	For	example,	if	you	have	a	state	that	is	passed	into	a
component	as	a	prop	and	displayed	in	the	DOM,	when	the	state	changes,	the
prop	will	be	updated,	and	the	inner	component	will	know	that	the	prop	has
changed	and	update	the	value	in	the	DOM.

Let’s	build	a	simple	component	that	simply	counts	up	from	0	after	it	is	mounted
and	displays	the	count	to	the	user.

Here	it	is	in	React:

class TickTock extends React.Component {
 constructor(props) {
 super(props);

 this.state = {
 number: 0,
 };
 },
 componentDidMount() {
 this.setInterval(() => {
 this.setState({
 number: this.state.number + 1
 });
 }, 1000);
 },
 componentWillUnmount() {
 clearInterval(this.counterInterval);
 },
 render() {
 return (
 <p>{this.state.number} seconds have passed</p>
);
 }
};

Here	it	is	in	Vue:

const TickTock = {
 template: '<p>{{ number }} seconds have passed</p>',
 data: () => ({
 number: 0,
 counterInterval: undefined,
 }),
 mounted() {
 this.counterInterval = setInterval(() => {
 this.number++;
 }, 1000);
 },
 destroyed() {
 clearInterval(this.counterInterval);
 }
};

With	both	examples,	we’ve	added	some	logic	to	clear	the	interval	when	the
component	is	destroyed.	This	is	to	prevent	memory	leaks.

This	brings	us	nicely	onto	our	next	topic:	life-cycle	hooks.

Life-Cycle	Hooks
The	way	components	are	added	and	removed	from	the	DOM	are	similar	in	both
libraries,	and	there	are	methods	you	can	add	to	your	components	in	both	libraries
to	run	code	at	various	points	throughout	the	life	cycle	of	a	component.

Creating
A	component	is	created	and	then	added	to	the	DOM.	In	React,	you	have	the
following	four	hooks:

constructor()

Called	before	the	component	is	mounted

componentWillMount()

Called	immediately	before	the	component	is	mounted

render()

Called	as	the	component	is	mounted	and	where	you	return	your	JSX

componentDidMount()

Called	immediately	after	the	component	is	mounted

In	Vue,	you	again	have	four	hooks,	but	they	do	slightly	different	things:

beforeCreate()

Called	before	the	component	is	initialized

created()

Called	after	the	component	is	initialized,	but	before	it	is	added	to	the	DOM

beforeMount()

Called	after	the	element	is	ready	to	be	added	to	the	DOM

mounted()

Called	after	the	element	has	been	created	(but	not	necessarily	added	to	the
DOM—use	nextTick()	for	that)

Updating
After	a	component	has	been	created	and	added	to	the	DOM,	the	data	can	change,
and	when	that	happens,	the	component	will	be	updated.

In	React,	you	have	the	following	five	functions:

componentWillReceiveProps()

Called	before	the	component	props	are	updated

shouldComponentUpdate()

Called	to	see	whether	the	component	should	be	updated

componentWillUpdate()

Called	before	the	component	is	updated

render()

Called	to	generate	the	new	markup	that	should	be	returned	by	the	component

componentDidUpdate()

Called	after	the	component	is	updated

In	Vue,	you	have	only	two	hooks:

beforeUpdate()

Called	when	the	component	is	about	to	be	updated

updated()

Called	after	the	component	is	updated

In	React,	shouldComponentUpdate()	is	commonly	used	when	using	another
library	that	manipulates	the	DOM,	which	doesn’t	work	so	well	with	React—it
often	overwrites	those	changes	unless	you	tell	it	not	to!	It’s	also	used	to	optimize
component	rendering.	In	Vue,	this	usually	isn’t	an	issue,	as	it	works	well	with
other	libraries	and	handles	the	optimization	automatically,	but	if	you	want	to
ensure	that	Vue	never	updates	a	component	again,	even	if	the	data	changes,	you
can	add	the	v-once	attribute	to	it	to	tell	Vue	to	render	it	only	once.

Setting	CSS	Classes
React	has	a	commonly	used	library	to	assist	when	setting	class	attributes	called
classnames.	It	works	like	this:

<div className={classNames('foo', { bar: isBar })}>...</div>

Vue	has	something	similar,	but	built	in.	v-bind:class,	shortened	to	:class,
doesn’t	just	support	expressions,	but	allows	you	to	use	objects	and	arrays	too:

<div :class="['foo', { bar: isBar }]">...</div>

Differences
In	addition	to	having	similarities,	React	and	Vue	have	differences.	I	won’t	cover
all	the	subtle	differences—the	syntax	differences,	the	method	name	differences
—I’ll	just	stick	to	the	fundamentals.

Mutation
A	fundamental	difference	between	the	two	libraries	is	that	with	React,	mutating
state	is	heavily	discouraged,	whereas	with	Vue,	replacing	or	mutating	data	is	the
only	way	to	update	it!	We	also	see	this	with	Redux	and	vuex—with	Redux,
whenever	you	want	to	change	the	store,	you	generate	a	new	store,	whereas	with
vuex,	you	mutate	the	existing	store.	We’ll	cover	Redux	and	vuex	later	in	this
appendix,	and	for	now	focus	on	component	state.

To	update	the	state	of	a	component	in	React,	you	use	setState:

this.setState({
 user: {
 ...this.state.user,
 name: newName
 }
})

The	new	state	is	then	merged	(using	a	shallow	merging	strategy)	into	the	state
object.

With	Vue,	you	modify	the	data	directly:

this.user.name = newName;

This	does	come	with	caveats:	for	example,	you	have	to	have	already	defined	the

name	property	of	the	user	object,	and	you	can’t	modify	array	items	directly,
instead	having	to	use	splice	to	remove	the	old	item	and	replace	it	with	the	new
one.	To	work	around	this,	there’s	a	Vue.set()	method:

Vue.set(this.user, 'name', newName);

Generally,	you	don’t	need	to	worry	about	this,	but	if	you’re	running	into	issues
with	stuff	not	updating,	this	could	be	why.	The	way	reactivity	works	in	Vue	and
a	list	of	the	caveats	can	be	found	in	“Reactivity”.

JSX	Versus	Templates
Another	fundamental	difference	between	React	and	Vue	is	the	way	you	get	data
to	display	on	the	page.	In	React,	famously,	you	use	JSX,	a	syntax	invented	by
Facebook	to	write	HTML	directly	in	JavaScript.	In	Vue,	you	can	use	JSX	if	you
choose,	but	most	people	use	templates	instead.	The	templates	have	an	Angular-
like	syntax,	with	directives	and	data	binding.

In	React,	the	code	to	generate	an	HTML	list	from	an	array	might	look	like	this:

render() {
 return (

 {this.state.items.map((item) => (
 <li className={classNames({ active: item.selected })}>
 {item.text}

))}

 {this.state.items.length ? null : (
 There are no items
)}

);
}

There	are	quite	a	few	ways	that	can	be	rewritten.

In	Vue,	the	template	looks	like	this:

 <li v-for="item in items" :class="{ active: item.selected }">

 {{ item.text }}

 <li v-if="!items.length">There are no items

I	prefer	the	template	syntax,	even	though	I	very	much	liked	JSX	when	I	wrote
React.	If	you’re	really	attached	to	JSX,	you	can	use	it	with	Vue	too:

render(h) {
 return (

 {this.items.map((item) => (
 <li class={{ active: item.selected }}>
 {item.text}

))}

 {this.items.length ? null : (
 There are no items
)}

);
}

Refer	to	Chapter	4	to	see	how	you	can	set	this	up	in	your	application.

CSS	Modules
The	final	major	difference	is	the	way	CSS	is	written	in	Vue.	React	doesn’t	have	a
built-in	way	to	do	this,	but	it’s	extremely	common	to	use	CSS	modules.

In	React,	using	CSS	modules	looks	like	this:

.user {
 border: 2px #ccc solid;
 background-color: white;
}

.name {
 font-size: 24px;
}

.bio {
 font-size: 16px;
 color: #333;

}

And	the	JSX:

import styles from './styles.css';

// ...

render() {
 return (
 <div className={styles.user}>
 <h2 className={styles.name}>{user.name}</h2>
 <p className={styles.bio}>{user.bio}</p>
 </div>
);
}

Vue	supports	CSS	modules	as	well,	and	without	any	plug-ins	or	additional	build
tool	configuration.	In	Vue,	it	looks	like	this	(when	using	single-file	components):

<template>
 <div :class="$style.user">
 <h2 :class="$style.name">{{ user.name }}</h2>
 <p :class="$style.bio">{{ user.bio }}</p>
 </div>
</template>

<style module>
 .user { ... }
 .name { ... }
 .bio { ... }
</style>

More	commonly,	though,	you’ll	see	people	using	scoped	CSS	in	Vue.	Scoped
CSS	works	by	adding	a	random	data	attribute	to	every	element	output	by	that
component,	and	then	adding	it	to	the	end	of	every	CSS	selector.	Any	CSS	you
write	in	that	<style>	tag	will	apply	only	to	the	elements	produced	by	that
component.

The	previous	example	written	using	scoped	CSS	looks	like	this:

<template>
 <div class="user">
 <h2 class="name">{{ user.name }}</h2>

 <p class="bio">{{ user.bio }}</p>
 </div>
</template>

<style scoped>
 .user { ... }
 .name { ... }
 .bio { ... }
</style>

The	CSS	in	the	style	tag,	even	though	we’ve	used	really	generic	class	names	that
will	probably	apply	to	other	elements	outside	the	component	too,	will	apply	only
to	the	HTML	in	the	element.	I’d	still	recommend	using	longer,	more	descriptive
class	names,	though!

Scoped	CSS	also	works	well	with	SCSS	or	other	CSS	preprocessors,	and
nesting.

Ecosystem
React	has	a	huge	ecosystem	because	of	its	popularity	and	widespread	use.	Vue,
as	a	newer	and	currently	less	popular	library,	doesn’t	have	the	ecosystem	or
community	that	React	has	yet—although	it’s	getting	better	every	day,	and	at	this
point,	growing	faster	than	the	React	ecosystem.

Unfortunately,	the	ecosystem	for	React,	especially	for	mission-critical	tasks	such
as	routing,	can	often	be	quite	fragmented.	Multiple	routing	solutions	exist	for
React—although	react-router	seems	to	be	the	most—whereas	there	is	only	one
for	Vue,	vue-router.	Although	Facebook	has	left	the	community	to	develop
nearly	all	of	the	ecosystem	that	isn’t	React	itself,	the	people	behind	Vue	are	also
the	same	people	behind	vue-router,	vuex,	vue-test-utils,	vue-cli,	and	probably
other	official	libraries	in	the	future.

In	practice,	if	you	are	using	functionality	that	is	provided	by	an	official	Vue
plug-in	(routing,	state	management,	testing)	you’ll	have	a	nice	experience	and
won’t	have	to	make	any	choices.	If	you’re	using	functionality	that	isn’t	provided
by	an	official	plug-in	(internationalization,	HTTP	resource	management)	you’ll
probably	end	up	having	a	worse	experience	than	you	would	with	React,	which
has	a	more	established	ecosystem.

For	now,	let’s	look	at	where	the	official	plug-ins	can	help	us.

Routing
We	have	a	couple	of	options	for	handling	routing	in	React,	but	by	far	the	most
widely	used	option	is	react-router.	This	library	uses	JSX	to	specify	components
that	will	display	when	the	page	matches	a	given	route.

A	router	powered	by	react-router	might	look	something	like	this:

const app = () => (
 <Router history={hashHistory}>
 <Route path="/" component={PageHome} />
 <Route path="/user/:userId" component={PageUser} />

 <Route path="/settings" component={PageSettings}>
 <Route path="/profile" component={PageSettingsProfile} />
 <Route path="/email" component={PageSettingsEmail} />
 </Route>
 </Router>
);

In	Vue,	an	official	library	handles	routing:	vue-router.	It	doesn’t	use	JSX,	instead
using	an	object	to	configure	the	router.	The	same	router	as	the	preceding	one
might	look	like	this:

const router = new VueRouter({
 mode: 'history',
 routes: [
 {
 path: '/',
 component: PageHome
 },
 {
 path: '/user/:userId',
 component: PageUser
 },
 {
 path: '/settings',
 component: PageSettings,
 children: [
 {
 path: 'profile',
 component: PageSettingsProfile
 },

 {
 path: 'email',
 component: PageSettingsEmail
 }
]
 }
]
});

Both	libraries	do	the	same	things,	just	in	different	ways.

State	Management
The	most	commonly	used	state	management	library	in	React	is	called	Redux,
and	the	equivalent	library	in	Vue	is	the	official	plug-in	called	vuex.	Both	of	them
operate	using	basically	the	same	methodology,	providing	a	global	store	that	you
can	store	data	in	and	modify	throughout	your	app.	If	you’re	familiar	with	Redux,
you’re	familiar	with	vuex,	and	vice	versa;	the	only	thing	that	differs	between
them	is	the	terminology	and	the	mutation	differences	discussed	earlier.

With	Redux,	you	have	a	store	that	contains	state.	You	can	either	access	the	state
directly,	or	using	react-redux	you	can	use	the	mapStateToProps	function	in
the	middleware	to	make	it	accessible	as	a	prop.	To	update	the	state,	you	use	a
reducer	to	generate	a	new	state.	Reducers	are	synchronous,	and	to	modify
asynchronously,	either	you	make	the	change	in	a	component,	or	you	can	use	a
plug-in	such	as	redux-thunk	to	add	asynchronous	actions	to	your	app.

With	vuex,	you	have	a	store	that	contains	state.	You	can	access	the	state	directly,
but	you	cannot	mutate	it	directly:	to	mutate	it,	you	use	mutations,	special
methods	within	the	store	that	are	used	to	change	the	data.	Mutations	are
synchronous	only,	and	so	to	modify	something	asynchronously	(for	example,	to
update	something	from	an	API	directly	in	the	store),	you	can	use	actions.	You
can	do	all	of	that	without	using	any	additional	plug-ins—just	Vue	and	vuex.

Let’s	make	a	store	that	stores	a	list	of	users.

With	Redux:

import { createStore, applyMiddleware } from 'redux';
import thunk from 'redux-thunk';

const initialState = {
 users: undefined
};

const reducer = (state = initialState, action) => {
 switch (action.type) {
 case 'SET_USERS':
 return Object.assign({}, state, {
 users: action.payload
 });

 default: return state;
 }
};

const store = createStore(reducer, applyMiddleware(thunk))

And	in	a	separate	actions	file:

export function updateUsers() {
 return (dispatch, getState) => {
 return fetch('/api/users')
 .then((res) => res.json())
 .then((users) => dispatch({ type: 'SET_USERS', payload: users }));
 };
};

And	with	vuex:

const store = new Vuex.Store({
 state: {
 users: undefined
 },
 mutations: {
 setUsers(state, users) {
 state.users = users;
 }
 },
 actions: {
 updateUsers() {
 return fetch('/api/users')
 .then((res) => res.json())
 .then((users) => this.setUsers(users));
 }
 }
});

The	way	you	use	the	store	in	components	is	quite	different	in	React	and	in	Vue.

In	React,	you	have	to	wrap	the	entire	component	in	the	Redux	middleware,
which	takes	mapStateToProps	and	mapDispatchToProps	arguments	and	passes
the	actions	and	state	into	the	component	as	props.

Here’s	how	you	would	update	the	users	and	get	the	data	from	the	store	in	React:

import { connect } from 'react-redux';
import { updateUsers } from './actions';

class UserList extends React.Component {
 componentDidMount(state, { updateUsers }) {
 updateUsers();
 },
 render({ users }) {
 return (
 ...
);
 }
}

const mapStateToProps = ({ users }) => users;
const mapDispatchToProps = { updateUsers };

export default connect(mapStateToProps, mapDispatchToProps)(UserList);

The	component	gets	the	users	when	it	is	mounted,	and	then	when	they’ve	been
loaded,	they	are	available	using	just	users,	as	the	state	is	mapped	to	props
thanks	to	the	Redux	middleware.

Vue	and	vuex	are	a	lot	easier	to	use	together	because	of	how	nicely	the
ecosystem	works	together.	You	don’t	need	to	add	anything	special	to	the
component;	you	can	access	the	data	using	this.$store.

Here’s	the	Vue	equivalent	of	the	preceding	code:

const UserList = {
 template: '...',
 mounted() {
 this.$store.dispatch('updateUsers');
 },
 computed: {
 users() {
 return this.$store.state.users;

 }
 }
};

The	component	gets	the	users	when	it	is	mounted,	and	then	when	the	users	have
been	loaded,	they	are	available	using	this.users.

vuex	also	provides	helper	functions	to	help	avoid	repetition	in	your	code.	For
more	information	on	vuex,	check	out	Chapter	5.

Unit-Testing	Components
A	common	way	of	unit	testing	React	components	is	to	use	Enzyme.	Enzyme	is	a
library	published	by	Airbnb	that	makes	mounting	and	testing	components	easy.

A	test	in	Enzyme	might	look	like	this:

import { expect } from 'chai';
import { shallow } from 'enzyme';
import UserView from '../components/UserView.js';

const wrapper = shallow(<UserView />);
expect(wrapper.find('p')).to.have.length(1);

const text = wrapper.find('p').text();
expect(text).to.equal('User name: Callum Macrae');

Vue	has	a	similar	library	called	vue-test-utils.	Like	Enzyme,	it	provides
functionality	to	make	mounting	components,	traversing	the	DOM,	and	running
tests	a	lot	easier.

Here’s	a	similar	test,	but	testing	a	Vue	component	using	vue-test-utils	instead:

import { expect } from 'chai';
import { shallow } from 'vue-test-utils';
import UserView from '../components/UserView.vue';

const wrapper = shallow(UserView);
expect(wrapper.contains('p')).toBe(true);

const text = wrapper.find('p').text();
expect(text).toBe('User name: Callum Macrae');

As	you	can	see,	they	have	similar	syntax,	so	switching	from	one	to	the	other
shouldn’t	prove	to	be	too	much	of	a	challenge.

Index

Symbols

$emit	method,	Custom	Events

$event	variable,	Inputs	and	Events

$off	method,	Custom	Events

$on	method,	Custom	Events

$once	method,	Custom	Events

404	pages,	404	Pages

A

a	(anchor)	element,	Navigation

output	from	use	of	router-link,	The	output	Tag

actions,	Actions-Destructuring

action	helpers,	Action	Helpers

dispatching	in	namespaced	modules,	Namespaced	Modules

in	modules,	accessing	root	scope,	Modules

returning	promises	in,	Promises	and	Actions

using	destructuring	in	arguments,	Destructuring

active	class,	setting	for	Bootstrap	navbar,	Active	Class

active	link,	Active	Class

active-class	property,	Active	Class

addEventListener	method,	Inputs	and	Events

afterEach	guard,	Navigation	Guards

aliases	(component),	Redirect	and	Alias

Alt	key,	event	modifiers	for,	Event	Modifiers

animations,	JavaScript	Animations

transitions	vs.,	JavaScript	Animations

arrays

passing	into	templates,	Templates,	Data,	and	Directives

passing	to	v-bind:class,	Class	Binding

setting	items	in,	Setting	items	on	an	array

setting	length	of,	Setting	the	length	of	an	array

using	to	specifying	multiple	style	objects	in	inline	styling,	Array	Syntax

working	with,	using	v-for,	Looping	in	Templates

B

Babel	plug-in,	JSX,	State	Helpers

babel-plugin-transform-vue-jsx,	JSX

beforeCreate	hook,	Life-Cycle	Hooks

beforeDestroy	hook,	Life-Cycle	Hooks

beforeEach	guard,	Navigation	Guards

beforeEnter	guard,	defining	per-route,	Per-Route	Guards

beforeMount	hook,	Life-Cycle	Hooks

beforeRouteEnter	guard,	In-Component	Guards

beforeRouteLeave	guard,	In-Component	Guards

beforeRouteUpdate	guard,	Reacting	to	Route	Updates,	In-Component	Guards

beforeUpdate	hook,	Life-Cycle	Hooks

bind	hook,	Custom	Directives

binding	arguments,	Binding	Arguments-Binding	Arguments

binding	data

one-way-down	binding,	Data	Flow	and	the	.sync	Modifier

two-way,	Two-Way	Data	Binding-Two-Way	Data	Binding,	Data	Flow	and	the
.sync	Modifier

using	filters	with	v-bind,	Filters

Bootstrap	navbar,	setting	active	class	for,	Active	Class

bootstrapping	Vue,	Bootstrapping	Vue-Nuxt.js

bootstrapping	Vue,	Nuxt.js,	Nuxt.js

bootstrapping	Vue,	vue-cli,	id=ix_Vuebootvcli,	vue-cli

browserify,	browserify

browserify-simple,	browserify-simple

C

caching	(computed	properties),	Computed	Properties

camel	case,	Casing	of	Props

.capture	event	modifier,	Event	Modifiers

case	(of	props),	Casing	of	Props

checkboxes,	two-way	data	binding,	Two-Way	Data	Binding

children,	specifying	in	createElement,	Children

class	binding	with	v-bind:class,	Class	Binding-Class	Binding

click	event	handler,	adding	to	router-link,	Native	Events

client-side	routing,	using	vue-router,	Client-Side	Routing	with	vue-router-
Summary

changing	router	mode	to	history,	HTML5	History	Mode

dynamic	routing,	Dynamic	Routing-Passing	Params	to	Components	as	Props

passing	params	to	components	as	props,	Passing	Params	to	Components	as
Props

reacting	to	route	updates,	Reacting	to	Route	Updates

full	basic	setup	of	router	using	vue-router,	Basic	Usage

installing	vue-router,	Installation

navigation,	Navigation-Programmatic	Navigation

navigation	guards,	Navigation	Guards-In-Component	Guards

nested	routes,	Nested	Routes

passing	the	router	into	Vue,	Basic	Usage

redirects	and	aliases,	Redirect	and	Alias

route	names,	Route	Names

route	order,	Route	Order,	404	Pages

setting	up	a	router,	Basic	Usage

code	examples	from	this	book,	Using	Code	Examples

color,	transitioning,	CSS	Transitions

Command	key	(macOS),	Event	Modifiers

components,	Components	in	Vue.js-Summary

basic,	example,	Component	Basics

communication	between,	State	Management	with	Vuex

data,	methods,	and	computed	properties,	Data,	Methods,	and	Computed
Properties

importing,	JSX

in	Vue	vs.	React,	Components

in-component	navigation	guards,	In-Component	Guards

mixins,	Mixins-Merging	Mixins	and	Components

merging	with	components,	Merging	Mixins	and	Components

non-prop	attributes,	Non-prop	Attributes

passing	content	into,	using	slots,	Passing	Content	into	Components	with	Slots-
Custom	Events

passing	data	into,	Passing	in	Data-Custom	Inputs	and	v-model

router-view,	Basic	Usage

testing,	Testing	Vue	Components-Summary

introducing	vue-test-utils,	Introducing	vue-test-utils

mocking	and	stubbing	data,	Mocking	and	Stubbing	Data

mount	function	options,	mount()	Options

querying	the	DOM,	Querying	the	DOM

simple	component,	Testing	a	Simple	Component

Vue	vs.	React,	Unit-Testing	Components

working	with	events,	Working	with	Events-Working	with	Events

updating	in	Vue	vs.	React,	Updating

using	ref	in,	Accessing	Elements	Directly	Using	ref

v-for	and,	Components	and	v-for-Components	and	v-for

vue-loader	and	.vue	files,	vue-loader	and	.vue	Files-vue-loader	and	.vue	Files

components	property,	Summary

componentUpdated	hook,	Custom	Directives

computed	properties,	Computed	Properties-Computed	Properties

changing	from	function	to	object	using	get	and	set	properties,	Computed
Properties

components,	Data,	Methods,	and	Computed	Properties

deciding	when	to	use,	vs.	data	object	or	methods,	Computed	Properties

differences	from	methods,	Computed	Properties

existing,	combining	mapState	function	with,	State	Helpers

in	mapState	function,	State	Helpers

in	mixins	and	components,	Merging	Mixins	and	Components

private,	in	mixins,	Merging	Mixins	and	Components

this.$store.state.messageCount	in,	State	and	State	Helpers

content	delivery	networks	(CDNs),	Installation	and	Setup

content,	passing	into	components	with	slots,	Passing	Content	into	Components
with	Slots-Custom	Events

destructuring	slot	scope,	Slot	scope	destructuring

fallback	content,	Fallback	Content

named	slots,	Named	Slots

scoped	slots,	Scoped	Slots

context,	Destructuring

in	modules,	Modules

created	hook,	Life-Cycle	Hooks,	Merging	Mixins	and	Components

createElement	function,	Render	Functions	and	JSX

arguments,	Render	Functions	and	JSX

children	of	element,	specifying,	Children

data	object	argument,	The	Data	Object

tag	name	argument,	The	Tag	Name

cross-site	scripting	(XSS)	vulnerabilities,	Setting	HTML	Dynamically

CSS

in	Vue	vs.	React,	CSS	Modules

object	properties,	conversion	to	CSS	properties,	Inline	Style	Binding

running	through	preprocessors,	Preprocessors

scoped	CSS	with	vue-loader,	Scoped	CSS	with	vue-loader

setting	classes	in	Vue	vs.	React,	Setting	CSS	Classes

transitions,	CSS	Transitions

enter	and	leave,	classes	for,	CSS	Transitions

use	by	v-show	to	show/hide	an	element,	v-if	Versus	v-show

using	CSS	modules	with	vue-loader,	CSS	Modules	with	vue-loader

Ctrl	key,	event	modifiers	for,	Event	Modifiers

D

data

components,	Data,	Methods,	and	Computed	Properties

mocking	and	stubbing,	Mocking	and	Stubbing	Data

passing	into	components,	Passing	in	Data-Custom	Inputs	and	v-model

casing	props,	Casing	of	Props

custom	inputs	and	v-model,	Custom	Inputs	and	v-model-Custom	Inputs	and
v-model

data	flow	and	.sync	modifier,	Data	Flow	and	the	.sync	Modifier-Data	Flow
and	the	.sync	Modifier

prop	validation,	Prop	Validation

reactivity,	Reactivity

passing	into	templates	using	interpolation,	Templates,	Data,	and	Directives

private	data	in	mixins,	Merging	Mixins	and	Components

setting	initial	input	text	value	in	data	object,	Two-Way	Data	Binding

storage	in	a	mixin,	Mixins

templates,	directives,	and,	Templates,	Data,	and	Directives

data	binding	(see	binding	data)

data	object

deciding	when	to	use,	vs.	methods	or	computed	properties,	Computed
Properties

in	render	functions,	The	Data	Object

watching	properties	of	objects	in,	Watching	Properties	of	Objects	in	the	Data
Object

data	types

passing	into	templates,	Templates,	Data,	and	Directives

specifying	type	of	a	prop,	Prop	Validation

deep	watching,	Deep	Watching

(see	also	watchers)

default-text	class,	Fallback	Content

destroyed	hook,	Life-Cycle	Hooks

direct	property,	Redirect	and	Alias

directives,	Templates,	Data,	and	Directives

binding	arguments,	Binding	Arguments-Binding	Arguments

combining	with	interpolation	to	display	text,	Templates,	Data,	and	Directives

custom,	Custom	Directives-Hook	Arguments

hook	arguments,	Hook	Arguments

v-if	vs.	v-show,	v-if	Versus	v-show

dirty	checking,	How	It	Works

Document	Object	Model	(DOM)

accessing	elements	directly	using	ref,	Accessing	Elements	Directly	Using	ref

querying,	Querying	the	DOM

using	Vue	to	output	HTML	to	the	DOM	from	values	in	JavaScript,	Why
Vue.js?

dynamic	routing,	Dynamic	Routing-Passing	Params	to	Components	as	Props

passing	params	to	components	as	props,	Passing	Params	to	Components	as
Props

reacting	to	route	updates,	Reacting	to	Route	Updates

E

ecosystem,	Vue	vs.	React,	Ecosystem

else	statement	(in	if-else),	Templates,	Data,	and	Directives

.emitted	method,	Working	with	Events

Enter	key,	pressing,	Event	Modifiers

enter	transitions,	CSS	Transitions

Enzyme,	Unit-Testing	Components

error	pages,	404	Pages

events

emitting	custom	event	with	components,	Custom	Events-Custom	Events

event	listeners	for	native	DOM	events	in	components,	Components	and	v-for

inputs	and,	Inputs	and	Events-Event	Modifiers

event	modifiers,	Event	Modifiers

v-on	shortcut,	The	v-on	Shortcut

listening	for	native	events	on	router-link,	Native	Events

working	with,	using	vue-test-utils,	Working	with	Events-Working	with	Events

.exact	event	modifier,	Event	Modifiers

F

falsy	values,	v-if	Versus	v-show

fetch	API,	Actions

file	structure	in	vuex	modules,	File	Structure

filters,	Filters-Filters

caveats,	Filters

chaining	multiple	filters	in	an	expression,	Filters

registering	using	Vue.filter	function,	Filters

taking	arguments,	Filters

.find	method,	Querying	the	DOM

frameworks,	Preface

G

get	and	set	properties	(of	computed	properties),	Computed	Properties

getters,	Getters-Mutations

accessing	in	namespaced	modules,	Namespaced	Modules

getter	helpers,	Getter	Helpers

in	modules,	accessing	root	scope,	Modules

guards

beforeRouteUpdate,	Reacting	to	Route	Updates

navigation,	Navigation	Guards-In-Component	Guards

H

hash	mode,	Navigation

history	methods	(browser),	Programmatic	Navigation

history	mode,	HTML5	History	Mode,	Navigation,	Navigation

hooks,	Life-Cycle	Hooks

(see	also	life-cycle	hooks)

for	animations,	JavaScript	Animations

in	directives,	Custom	Directives

hook	arguments,	Hook	Arguments

href	attribute	(a	tag),	router-link	and,	The	output	Tag

HTML,	Who	This	Book	Is	For

in	template	property	of	a	component,	vue-loader	and	.vue	Files

non-prop	attributes,	in	root	element	of	component,	Non-prop	Attributes

outputting	to	the	DOM	from	values	in	JavaScript,	using	Vue,	Why	Vue.js?

passing	into	components	with	slot	element,	Passing	Content	into	Components
with	Slots

running	through	preprocessors,	Preprocessors

setting	dynamically,	Setting	HTML	Dynamically

HTML5	history	API,	HTML5	History	Mode

(see	also	history	mode)

I

inline	style	binding,	Inline	Style	Binding-Scoped	CSS	with	vue-loader

array	syntax,	Array	Syntax

providing	multiple	values	in	an	array,	Multiple	Values

inputs	and	events,	Inputs	and	Events-Event	Modifiers

inserted	hook,	Custom	Directives

installation	and	setup,	Installation	and	Setup-vue-loader	and	webpack

interpolation

combining	with	directives	to	display	text,	Templates,	Data,	and	Directives

using	filters	with,	Filters

using	to	pass	data	into	templates,	Templates,	Data,	and	Directives

J

JavaScript

animations,	JavaScript	Animations

business	logic	in,	Templates,	Data,	and	Directives

prerequisites	for	using	Vue.js,	Who	This	Book	Is	For

running	through	preprocessors,	Preprocessors

jQuery,	Vue.js	vs.,	Why	Vue.js?

JSX,	JSX-Summary,	Routing

importing	components,	JSX

spread	operator,	JSX

vs.	templates,	in	React	and	Vue,	JSX	Versus	Templates

K

kebab	case,	Casing	of	Props

key,	specifying	with	v-for,	Components	and	v-for

keyboard	events,	key	event	modifiers,	Event	Modifiers

keyboard	modifier	keys,	event	modifiers	for,	Event	Modifiers

L

leave	transitions,	CSS	Transitions

life-cycle	hooks,	Life-Cycle	Hooks

comparison	in	Vue	and	React,	Life-Cycle	Hooks

in	mixins	and	components,	Merging	Mixins	and	Components

listeners	object,	mount()	Options

location.pathname,	Templates,	Data,	and	Directives

looping	in	templates,	Looping	in	Templates

(see	also	v-for	directive)

M

mapActions	function,	Action	Helpers,	Namespaced	Modules

mapGetters,	Getter	Helpers,	Namespaced	Modules

mapMutations	method,	Mutation	Helpers,	Namespaced	Modules

mapState	helper	function,	State	Helpers,	Namespaced	Modules

combining	with	existing	computed	properties,	State	Helpers

in	modules,	Modules

.meta	modifier	key	event	modifier,	Event	Modifiers

meta	property	(routes),	Navigation	Guards

methods,	Methods

component,	Data,	Methods,	and	Computed	Properties

deciding	when	to	use,	vs.	data	object	or	computed	properties,	Computed
Properties

differences	from	computed	properties,	Computed	Properties

private	methods	in	mixins,	Merging	Mixins	and	Components

this	in,	this

mixins,	Mixins-Merging	Mixins	and	Components

merging	with	components,	Merging	Mixins	and	Components

private	properties	in,	Merging	Mixins	and	Components

mocking	and	stubbing	data,	Mocking	and	Stubbing	Data,	Working	with	Events

mocks,	mount()	Options

modifier	keys,	event	modifiers	for,	Event	Modifiers

modifiers	(event),	Event	Modifiers

chaining,	Event	Modifiers

mouse	event	modifiers,	Event	Modifiers

modules	(CSS),	in	React	vs.	Vue,	CSS	Modules

modules	(vuex),	Modules-Namespaced	Modules

file	structure,	File	Structure

namespaced,	Namespaced	Modules

specifying	when	retrieving	data	from	the	store,	Modules

mount	function,	Querying	the	DOM-mount()	Options

mounted	hook,	Life-Cycle	Hooks,	Mixins,	Reacting	to	Route	Updates

mouse	event	modifiers,	Event	Modifiers

mutations,	Mutations-Mutations	Must	Be	Synchronous

addMessages,	Actions

mutation	helpers,	Mutation	Helpers

requirement	to	be	synchronous,	Mutations	Must	Be	Synchronous

triggering	in	namespaced	modules,	Namespaced	Modules

Vue	vs.	React,	Mutation

N

name	attribute,	adding	to	routes,	Route	Names

named	slots,	Named	Slots

namespaced	modules,	Namespaced	Modules

.native	modifier,	Components	and	v-for,	Native	Events

navigation,	Navigation-Programmatic	Navigation

active	class,	Active	Class

native	events	on	router-link,	Native	Events

output	tag	from	router-link,	The	output	Tag

programmatic,	Programmatic	Navigation

navigation	guards,	Navigation	Guards-In-Component	Guards

afterEach,	Navigation	Guards

in-component,	In-Component	Guards

per-route,	Per-Route	Guards

nested	routes,	Nested	Routes

meta	property	on	routes,	Navigation	Guards

new	Vue	method,	Custom	Events,	Testing	a	Simple	Component

next	method,	Navigation	Guards

npm

installing	vue-router,	Installation

installing	vue-test-utils,	Introducing	vue-test-utils

installing	vuex,	Installation

Nuxt.js,	Nuxt.js

O

object	spread	operator,	State	Helpers

Object.assign	method,	Adding	new	properties	to	an	object

objects

adding	reactive	properties	to,	Adding	new	properties	to	an	object

passing	into	templates,	Templates,	Data,	and	Directives

passing	to	v-bind:class,	Class	Binding

specifying	inline	styles	as,	Inline	Style	Binding

working	with,	using	v-for,	Looping	in	Templates

.once	event	modifier,	Event	Modifiers

one-way-down	binding,	Data	Flow	and	the	.sync	Modifier

opacity,	transitioning,	CSS	Transitions,	CSS	Transitions

P

PageNotFound	component,	404	Pages

params	object,	Dynamic	Routing

passing	as	props	to	router	component,	Passing	Params	to	Components	as
Props

path-to-regexp	library,	Dynamic	Routing

paths,	location.pathname,	Templates,	Data,	and	Directives

payloads

in	store.commit	method,	Mutations

support	by	mapMutations	method,	Mutation	Helpers

.prevent	event	modifier,	Event	Modifiers

promises,	mount()	Options,	Working	with	Events

returning	in	actions,	Promises	and	Actions

props	property

case	of	props,	Casing	of	Props

passing	params	as	props	to	components,	Passing	Params	to	Components	as
Props

reactivity,	Reactivity

using	to	pass	data	into	components,	Passing	in	Data

validation,	Prop	Validation

pwa,	pwa

R

radio	inputs,	two-way	data	binding,	Two-Way	Data	Binding

React,	Who	This	Book	Is	For

comparison	of	Vue	to,	Vue	from	React-Unit-Testing	Components

differences,	Differences-Unit-Testing	Components

getting	started,	Getting	Started

similarities,	Similarities-Differences

reactivity,	Reactivity-Setting	the	length	of	an	array

caveats,	Caveats

adding	reactive	properties	to	an	object,	Adding	new	properties	to	an	object

setting	items	in	arrays,	Setting	items	on	an	array

setting	length	of	an	array,	Setting	the	length	of	an	array

how	it	works,	How	It	Works

in	Vue	vs.	React,	Reactivity

props,	Reactivity

redirects,	Redirect	and	Alias

Redux,	Mutation,	State	Management

ref,	accessing	elements	directly	with,	Accessing	Elements	Directly	Using	ref

render	functions,	Render	Functions	and	JSX-JSX

and	JSX,	JSX-Summary

createElement	function,	Render	Functions	and	JSX

children	argument,	Children

data	object	argument,	The	Data	Object

tag	name	argument,	The	Tag	Name

render	property,	Render	Functions	and	JSX

requiresAuth	property,	Navigation	Guards

rootScope	property,	Modules

route	meta	fields,	Navigation	Guards

router-link	element,	Navigation

adding	a	(anchor)	tag	to,	The	output	Tag

click	event	handler,	Native	Events

output	tag	from,	The	output	Tag

router-link-active	class,	Active	Class

router.beforeEach	method,	Navigation	Guards

router.go	method,	Programmatic	Navigation

router.push	method,	Programmatic	Navigation

router.replace	method,	Programmatic	Navigation

routing,	Client-Side	Routing	with	vue-router

(see	also	vue-router)

Vue	vs.	React,	Routing

vue-router	library,	Why	Vue.js?

S

scoped	attribute,	style	element,	Scoped	CSS	with	vue-loader

scoped	CSS,	Scoped	CSS	with	vue-loader,	Preprocessors

scoped	slots,	Scoped	Slots

.self	event	modifier,	Event	Modifiers

server	configuration	and	vue-router,	HTML5	History	Mode

Shift	key,	event	modifiers	for,	Event	Modifiers

simple	template,	simple

single	slots,	Named	Slots

slot-scope	property,	Scoped	Slots

slots,	Passing	Content	into	Components	with	Slots-Custom	Events,	mount()
Options

fallback	content	in,	Fallback	Content

named,	Named	Slots

scoped,	Scoped	Slots

desctructuring	slot	scope,	Slot	scope	destructuring

span	element,	default	text	wrapped	in,	Fallback	Content

splice	method

setting	length	of	an	array,	Setting	the	length	of	an	array

using	to	set	items	in	arrays,	Setting	items	on	an	array

state

about,	State	and	State	Helpers

adding	updating	property	to	local	state	of	component,	Promises	and	Actions

in	modules,	Modules

mixing	vuex	state	and	local	state,	State	Helpers

state	helpers,	State	Helpers-State	Helpers

state	management	in	Vue	vs.	React,	State	Management

state	management	with	vuex,	Why	Vue.js?,	State	Management	with	Vuex-
Summary

actions,	Actions-Destructuring

concepts	in,	Concept-Concept

getters	and	getter	helpers,	Getters-Mutations

installing	vuex,	Installation

mutations,	Mutations-Mutations	Must	Be	Synchronous

promises	and	actions,	Promises	and	Actions

state	and	state	helpers,	State	and	State	Helpers-State	Helpers

.stop	event	modifier,	Event	Modifiers

store,	Concept

accessing	messageCount	property	of	state	object,	State	and	State	Helpers

getters	in,	Getters

setting	up,	Installation

splitting	into	modules,	Modules-Namespaced	Modules

store.commit	function,	Mutations

store.dispatch	method,	Actions

stubs,	mount()	Options

style	guide	(Vue),	Style	Guide

style	tags,	Scoped	CSS	with	vue-loader

styling	with	Vue,	Styling	with	Vue-Summary

class	binding	with	v-bind:class,	Class	Binding-Class	Binding

configuring	vue-loader	to	use	preprocessors,	Preprocessors

inline	style	binding,	Inline	Style	Binding-Scoped	CSS	with	vue-loader

scoped	CSS	with	vue-loader,	Scoped	CSS	with	vue-loader

using	CSS	modules	with	vue-loader,	CSS	Modules	with	vue-loader

.sync	event	modifier,	Data	Flow	and	the	.sync	Modifier

T

tag	name	argument,	render	functions,	The	Tag	Name

tag	property,	The	output	Tag

templates

data,	directives	and,	Templates,	Data,	and	Directives-Templates,	Data,	and
Directives

JSX	vs.,	in	React	and	Vue,	JSX	Versus	Templates

looping	in,	Looping	in	Templates

testing	components,	Testing	Vue	Components-Summary

introducing	vue-test-utils,	Introducing	vue-test-utils

mocking	and	stubbing	data,	Mocking	and	Stubbing	Data

mount	function	options,	mount()	Options

querying	the	DOM,	Querying	the	DOM

simple	component,	Testing	a	Simple	Component

Vue	vs.	React,	Unit-Testing	Components

working	with	events,	Working	with	Events-Working	with	Events

this,	this

accessing	computed	properties,	Computed	Properties

in	render	functions,	The	Tag	Name

inability	to	use	with	filters,	Filters

this.$emit	method,	Custom	Events

this.$nextTick	function,	Life-Cycle	Hooks

this.$refs	object,	Accessing	Elements	Directly	Using	ref

this.$route	property,	Dynamic	Routing

this.$router.push	method,	Programmatic	Navigation

this.$store,	Installation

to	property	(router-link),	Navigation,	Active	Class

transitions,	CSS	Transitions

animations	vs.,	JavaScript	Animations

enter	and	leave,	classes	for,	CSS	Transitions

truthy	values,	Templates,	Data,	and	Directives

U

unbind	hook,	Custom	Directives

update	hook,	Custom	Directives

updated	hook,	Life-Cycle	Hooks

updating	components	in	Vue	vs.	React,	Updating

userId,	Dynamic	Routing

V

v-bind	directive,	Binding	Arguments-Binding	Arguments,	Two-Way	Data
Binding

render	functions	and,	The	Data	Object

required	when	passing	data	other	than	strings,	Reactivity

using	filters	when	binding	values	to	properties,	Filters

v-bind:class,	Class	Binding-Class	Binding

v-bind:style,	Inline	Style	Binding

v-else	directive,	Templates,	Data,	and	Directives,	v-if	Versus	v-show

v-else-if,	v-if	Versus	v-show

v-for	directive,	Looping	in	Templates

components	and,	Components	and	v-for-Components	and	v-for

working	with	objects,	Looping	in	Templates

v-html	directive,	Setting	HTML	Dynamically

v-if	directive,	Templates,	Data,	and	Directives

in	transitions,	CSS	Transitions

vs.	v-show,	v-if	Versus	v-show

v-model	directive

using	for	two-way	data	binding,	Two-Way	Data	Binding

using	on	components	to	create	custom	inputs,	Custom	Inputs	and	v-model-
Custom	Inputs	and	v-model

using	to	sync	value	of	input	to	data	object,	Watchers

v-on	directive,	Native	Events

binding	event	listener	to	an	element,	Inputs	and	Events

shortcut	for,	The	v-on	Shortcut

using	with	custom	events	in	components,	Custom	Events

v-show	directive	vs.	v-if,	v-if	Versus	v-show

validation	(props),	Prop	Validation

view	logic	in	templates,	Templates,	Data,	and	Directives

vm	(ViewModel),	Testing	a	Simple	Component

.vue	files,	vue-loader	and,	vue-loader	and	.vue	Files-vue-loader	and	.vue	Files

vue-cli,	vue-loader	and	webpack,	vue-cli-Your	Own	Template

browserify	template,	browserify

pwa	template,	pwa

simple	template,	simple

using	your	own	template,	Your	Own	Template

webpack	template,	webpack

webpack-simple	template,	webpack-simple

vue-loader

installing,	vue-loader	and	webpack

scoped	CSS	with,	Scoped	CSS	with	vue-loader

using	CSS	modules	with,	CSS	Modules	with	vue-loader

using	preprocessors	with,	Preprocessors

using	with	components,	vue-loader	and	.vue	Files-vue-loader	and	.vue	Files

vue-router,	Why	Vue.js?,	Client-Side	Routing	with	vue-router-Summary,

Routing

changing	router	mode	to	history,	HTML5	History	Mode

dynamic	routing,	Dynamic	Routing-Passing	Params	to	Components	as	Props

passing	params	to	components	as	props,	Passing	Params	to	Components	as
Props

reacting	to	route	updates,	Reacting	to	Route	Updates

example	of	router	using,	Basic	Usage

installing,	Installation

navigation,	Navigation-Programmatic	Navigation

active	class,	Active	Class

native	events	on	router-link,	Native	Events

output	tag,	The	output	Tag

programmatic,	Programmatic	Navigation

navigation	guards,	Navigation	Guards-In-Component	Guards

in-component	guards,	In-Component	Guards

per-route	guards,	Per-Route	Guards

nested	routes,	Nested	Routes

passing	the	router	into	Vue,	Basic	Usage

redirects	and	aliases,	Redirect	and	Alias

route	names,	Route	Names

route	order,	Route	Order,	404	Pages

404	pages,	404	Pages

setting	up	a	router,	Basic	Usage

vue-test-utils,	Why	Vue.js?

introduction	to,	Introducing	vue-test-utils

wrapper	for	mounted	component,	Querying	the	DOM

Vue.component	method,	Component	Basics,	Summary

Vue.directive	function,	Custom	Directives

Vue.filter	function,	Filters

Vue.js

about,	Preface

advantages	of,	Why	Vue.js?-Why	Vue.js?

Vue.nextTick	function,	Life-Cycle	Hooks

Vue.set	function,	Adding	new	properties	to	an	object

using	to	set	items	in	arrays,	Setting	items	on	an	array

Vue.use	function,	Installation

vuex	library,	Why	Vue.js?,	State	Management	with	Vuex-Summary,	Mutation,
State	Management

actions,	Actions-Destructuring

action	helpers,	Action	Helpers

concepts	in,	Concept-Concept

getters,	Getters-Getter	Helpers

getter	helpers,	Getter	Helpers

installing,	Installation

modules,	Modules-Namespaced	Modules

file	structure,	File	Structure

namespaced,	Namespaced	Modules

mutations,	Mutations-Mutations	Must	Be	Synchronous

mutation	helpers,	Mutation	Helpers

promises	and	actions,	Promises	and	Actions

state,	State	and	State	Helpers

state	helpers,	State	Helpers-State	Helpers

W

watchers,	Watchers-Filters

deep	watching,	Deep	Watching

getting	old	value	of	changed	properties,	Getting	the	Old	Value

watching	properties	of	objects	in	data	object,	Watching	Properties	of	Objects
in	the	Data	Object

webpack,	Installation	and	Setup,	webpack

vue-loader	and,	vue-loader	and	webpack

webpack-simple,	webpack-simple

websockets,	Concept

moving	websocket	logic	into	vuex,	Concept

wildcard	paths	for	404	pages,	404	Pages

Windows	key,	Event	Modifiers

X

XSS	(cross-site	scripting)	vulnerabilities,	Setting	HTML	Dynamically

About	the	Author
Callum	Macrae	is	a	JavaScript	developer	and	occasional	musician	based	in
London,	UK,	working	at	SamKnows	to	make	the	internet	faster	for	everyone.
His	current	favorite	things	to	work	with	are	Vue	and	SVGs	(but	only	sometimes
at	the	same	time).	He	regularly	contributes	to	open	source	projects	including
gulp	and	his	own	projects,	and	can	be	found	on	GitHub	and	Twitter
(@callumacrae).

https://github.com/callumacrae
https://twitter.com/callumacrae

Colophon
The	animal	on	the	cover	of	Vue.js:	Up	and	Running	is	the	European	black	kite
(Milvus	migrans	migrans).	This	diurnal	raptor	is	found	throughout	central	and
eastern	Europe,	the	Mediterranean,	and	as	far	west	as	Mongolia	and	Pakistan	in
warm	months,	and	spends	winters	in	sub-Saharan	Africa.

The	black	kite	is	the	most	populous	species	in	family	Accipitridae	(which
includes	hawks,	eagles,	kites,	Old-World	vultures,	and	harriers)	with	an
estimated	global	population	of	roughly	six	million,	due	in	part	to	its	range,
adaptability,	and	willingness	to	scavenge	for	food.	The	black	kite	is
distinguished	from	other	subspecies	by	the	white	plumage	on	its	head,	its	forked
tail,	distinctly	angled	wings,	and	its	unique	call—a	shrill,	stuttering	whinny.

Many	of	the	animals	on	O’Reilly	covers	are	endangered;	all	of	them	are
important	to	the	world.	To	learn	more	about	how	you	can	help,	go	to
animals.oreilly.com.

The	cover	image	is	from	British	Birds.	The	cover	fonts	are	URW	Typewriter	and
Guardian	Sans.	The	text	font	is	Adobe	Minion	Pro;	the	heading	font	is	Adobe
Myriad	Condensed;	and	the	code	font	is	Dalton	Maag’s	Ubuntu	Mono.

http://animals.oreilly.com

	Preface
	Who This Book Is For
	Book Layout
	Style Guide
	Conventions Used in This Book
	Using Code Examples
	O’Reilly Safari
	How to Contact Us
	Acknowledgments

	1. Vue.js: The Basics
	Why Vue.js?
	Installation and Setup
	vue-loader and webpack

	Templates, Data, and Directives
	v-if Versus v-show
	Looping in Templates
	Binding Arguments
	Reactivity
	How It Works
	Caveats

	Two-Way Data Binding
	Setting HTML Dynamically
	Methods
	this

	Computed Properties
	Watchers
	Watching Properties of Objects in the Data Object
	Getting the Old Value
	Deep Watching

	Filters
	Accessing Elements Directly Using ref
	Inputs and Events
	The v-on Shortcut
	Event Modifiers

	Life-Cycle Hooks
	Custom Directives
	Hook Arguments

	Transitions and Animations
	CSS Transitions
	JavaScript Animations

	Summary

	2. Components in Vue.js
	Component Basics
	Data, Methods, and Computed Properties
	Passing in Data
	Prop Validation
	Casing of Props
	Reactivity
	Data Flow and the .sync Modifier
	Custom Inputs and v-model

	Passing Content into Components with Slots
	Fallback Content
	Named Slots
	Scoped Slots

	Custom Events
	Mixins
	Merging Mixins and Components

	vue-loader and .vue Files
	Non-prop Attributes
	Components and v-for
	Summary

	3. Styling with Vue
	Class Binding
	Inline Style Binding
	Array Syntax
	Multiple Values

	Scoped CSS with vue-loader
	CSS Modules with vue-loader
	Preprocessors
	Summary

	4. Render Functions and JSX
	The Tag Name
	The Data Object
	Children
	JSX
	Summary

	5. Client-Side Routing with vue-router
	Installation
	Basic Usage
	HTML5 History Mode
	Dynamic Routing
	Reacting to Route Updates
	Passing Params to Components as Props

	Nested Routes
	Redirect and Alias
	Navigation
	The output Tag
	Active Class
	Native Events
	Programmatic Navigation

	Navigation Guards
	Per-Route Guards
	In-Component Guards

	Route Order
	404 Pages

	Route Names
	Summary

	6. State Management with Vuex
	Installation
	Concept
	State and State Helpers
	State Helpers

	Getters
	Getter Helpers

	Mutations
	Mutation Helpers
	Mutations Must Be Synchronous

	Actions
	Action Helpers
	Destructuring

	Promises and Actions
	Modules
	File Structure
	Namespaced Modules

	Summary

	7. Testing Vue Components
	Testing a Simple Component
	Introducing vue-test-utils
	Querying the DOM
	mount() Options
	Mocking and Stubbing Data
	Working with Events
	Summary

	A. Bootstrapping Vue
	vue-cli
	webpack
	pwa
	webpack-simple
	simple
	browserify
	browserify-simple
	Your Own Template

	Nuxt.js

	B. Vue from React
	Getting Started
	Similarities
	Components
	Reactivity
	Life-Cycle Hooks
	Setting CSS Classes

	Differences
	Mutation
	JSX Versus Templates
	CSS Modules

	Ecosystem
	Routing
	State Management
	Unit-Testing Components

	Index

